

NO FISH MEAL AND FISH OIL IN AQUAFEED: A CHALLENGE FOR THE SUSTAINABLE DEVELOPMENT OF AQUACULTURE.

Skiba-Cassy S, Lazzarotto V, Corraze G. and Médale F.

UMR INRA – UPPA Nutrition, Métabolisme, Aquaculture (NuMéA) 64310 Saint Pée sur Nivelle

Part 1 - CONTEXT OF AQUACULTURE

Part 2 - IMPACT OF TOTAL SUBSTITUTION OF FISHMEAL AND FISH OIL BY PLANT INGREDIENTS

Part 3 – STRATEGIES TO REACH THE BEST ADEQUATION BETWEEN FISH AND NEW FEED

Part 1 - CONTEXT OF AQUACULTURE

Part 2 - IMPACT OF TOTAL SUBSTITUTION OF FISHMEAL AND FISH OIL BY PLANT INGREDIENTS

Part 3 – STRATEGIES TO REACH THE BEST ADEQUATION BETWEEN FISH AND NEW FEED

The proportion of seafood in human diets is increasing worldwide

Apparent fish consumption per capita in the world

The great expansion of Aquaculture

World capture fisheries and aquaculture production

50% of fish consumed today in the world are coming from aquaculture

% of aquaculture in fish consumption

Increasing demand in aquafeeds

Fishmeal (FM), fish oil (FO) and feed production

Stability of FM (6 MT) and FO (1 MT) production

Find alternatives for the sustainable development of aquaculture

FM & FO vs plant ingredients

High protein content (>70%)
Adequate AA and FA profiles
FO - High level of n-3 LC HUFA
FM - Source in vitamins and minerals

High availability and diversity Constant supply Relatively low costs

Marine origin Limited availability Price volatility Low protein content

AA deficiency (methionine, lysine...)

Anti-nutritional factors

Carbohydrates sources and content

Absence of LC-HUFA n-3

Reduction of percentage of FM and FO in commercial diets for fish

Several bottlenecks remaining with high levels of dietary replacement

- Decrease in FI and FE → impact growth and production efficiency
- Strong changes in body FA profile → reduced quality
- Alteration of metabolic pathways

Part 1 - CONTEXT OF AQUACULTURE

Part 2 - IMPACT OF TOTAL SUBSTITUTION OF FISHMEAL AND FISH OIL BY PLANT INGREDIENTS

Part 3 – STRATEGIES TO REACH THE BEST ADEQUATION BETWEEN FISH AND NEW FEED

Total fishmeal and fish oil replacement by plant ingredients during the whole life cycle of the rainbow trout

Experimental design

Rainbow trout fed 3 diets from first feeding until the reproduction

- Marine diet M → fishmeal and fish oil
- Vegetal diet ∨ → plant based diet free of marine ingredients
- Commercial like diet C → lower levels of fishmeal and fish oil

Nutrition & Aquaculture
FP7 European project

Diet composition

Ingredients	MAR	сом	VEG
Fish meal	<mark>65.21</mark>	<mark>30</mark>	0
Corn gluten	0	13.16	24
Wheat gluten	0	10.02	22.25
Soybean meal 48	0	6.06	1.8
Soy protein concentrate	0	10.24	20
White lupin	0	0.38	2.53
Peas	0	4.06	0
Rapeseed meal 00	0	6.23	2.26
Extruded whole wheat	21.11	1.31	0
<mark>Fish oil</mark>	<mark>11.68</mark>	<mark>8.11</mark>	<mark>O</mark>
Rapeseed oil	0	<mark>8.12</mark>	<mark>6.7</mark>
<mark>Linseed oil</mark>	<mark>O</mark>	<mark>O</mark>	<mark>6.7</mark>
<mark>Palm oil</mark>	O	<mark>0</mark>	<mark>3.55</mark>
Soy Lecithin	0	0	2
L-Lysine	0	0.3	1.5
L-Methionine	0	0.006	0.3
CaHPO4.2H20 (18%P)	0	0	2.91
Attractant Mix *	0	0	1.5
Min. premix	1	1	1
Vit. premix	1	1	1
Analytical composition			
DM %	94.27	95.34	95.46
Protein %DM	48.93	53.34	52.86
Lipid %DM	21.46	22.05	21.76
Energy kJ/g DM	23.02	24.20	24.05
Ash %DM	9.24	6.22	5.61

First feeding until juvenile (11g) - 7 months at 7°C

First feeding until juvenile (11g) - 7 months at 7°C

→ Decrease of the survival rate down to 70% in fry fed V diet

- →Lower growth with V diet during the first 4 months
- →No more difference in BW and SGR after 7 months

→ Reduction of FE (-10%) with V diet during the first months – No more difference after 7 months

Juvenile to 250-300g portion trout - 6 months at 17°C

Juvenile to 250-300g portion trout - 6 months at 17°C

- →Good and similar survival (96-98%)
- → Reduction of growth with V diet from 38 days at 17°C
- →Lower feed efficiency with V diet (-10%-15%)
- → Similar feed intake between the diets around 1,1 BW%/day

250-300g portion trout to large size tout - 13 months at 17°C

250-300g portion trout to large size tout - 13 months at 17°C

- →Lower growth with V diet during the whole period
- → Reduced FE in trout fed V diet

Body composition

- ❖ No difference in whole body protein content (16-17%)
- ❖ Body lipids increased in trout fed plant-based diet in juveniles and large size trout

Body lipid (%WW)	M	С	V
Juveniles	$9.39 \pm 0.38^{\textbf{b}}$	$9.94 \pm 1.52^{\text{b}}$	$\textbf{13.20} \pm \textbf{0.88}^{\textbf{a}}$
Portion	$\textbf{15.05} \pm \textbf{1.10}$	$\textbf{16.20} \pm \textbf{0.76}$	$\textbf{15.16} \pm \textbf{0.94}$
Large size	$\textbf{13.01} \pm \textbf{0.63}^{\textbf{b}}$	$10.08 \pm 5.76^{\textbf{b}}$	17.51 ± 0.71^{a}

❖ No difference in muscle lipid content (6-7%)

Whole body n-3 Long Chain Highly Unsaturated Fatty Acids

EPA & DHA proportions in whole body lipids

	First feed.	Juv.	Portion
EPA + DHA mg/fish	2.6	39.6	904

→ Presence of 0,9% EPA and 2% DHA of whole body lipids despite absence of n-3 LC-HUFA dietary supply

→ Biosynthesis of n-3 LC-HUFA

Large size trout to broodstock – 8 months at 7°C

Large size trout to broodstock – 8 months at 7°C

	M	С	V
GSI (%)	15.5 ± 0.8 a	13.4 ± 2.9 ab	$11.7 \pm 0.9 \text{ b}$
Egg weight (mg)	$48.5 \pm 5.0 \text{ a}$	40.7 ± 4.6 b	$\textbf{41.4} \pm \textbf{4.0} \; \textbf{b}$
Fry weight (mg)	$86 \pm 5 a$	75 ± 7 b	74 ± 6 b
Eyed egg (%)	90.3 ± 5.5	$\textbf{90.4} \pm \textbf{4.6}$	$\textbf{71.7} \pm \textbf{22.9}$
Hatching (%)	89.8 ± 5.3	89.4 ± 4.0	68.8 ± 23.9

→ Total substitution of FM and FO

- affected the development of the ovaries
- reduced egg and fry weight (also observed with partial substitution)

CONCLUSION

Trout fed a total plant based diet from first feeding until reproduction

is able to...

- Survive and grow
- Biosynthesize n-3 LC-HUFA
- Reach sexual maturation and produce viable eggs and fry

however...

- Growth performance is lower
- Low levels of EPA and DHA/ consumer expectations
- Reproductive performance are a little bit reduced

Feeding trout without marine ingredients during the whole life cycle is possible but further improvements are needed to better preserve growth and reproductive perfomance

- Lazzarotto, V. et al., 2015. PLoS One. 10, e0117609.
- Lazzarotto, V. et al., 2016. Br. J. Nutr. 115, 2079-2092.
- Lazzarotto, V. et al., 2016, submitted

Part 1 - CONTEXT OF AQUACULTURE

Part 2 - IMPACT OF TOTAL SUBSTITUTION OF FISHMEAL AND FISH OIL BY PLANT INGREDIENTS

<u>Part 3</u> – STRATEGIES TO REACH THE BEST ADEQUATION BETWEEN FISH AND NEW FEED

STRATEGIES TO REACH THE BEST ADEQUATION BETWEEN FISH AND NEW FEED

STRATEGIES TO REACH THE BEST ADEQUATION BETWEEN FISH AND NEW FEED

Nutritional Programming

"Early nutrition programming is the concept that differences in nutritional experience occurring at critical periods in early life, both pre- and post-birth, can program the development, the metabolism and the health of a person for the future."

Early stimulation

Subsequent challenge

Nutritional Programming of plant based diet utilization

Nutritional Programming of plant based diet utilization

SGR (%BW/jday)

Feed Intake (g/kg Met BW/day)

Feed Efficiency (g/kg Met BW/day)

→Short-term exposure of the fry to a plant-diet at first feeding improves acceptance and utilization of plant based-diet at later life stage

Geurden I. et al., 2013, Plos One 8: e83162

Nutritional Programming of plant based diet utilization

- Sensory perception
- Synaptic transmission
- Methylation
- Appetite control neuropeptides

- Metabolism (xenobiotic, intermediary)
- Protein turnover
- Cytoskeleton

Balasubramanian et al. 2016 BMC Genomics 17: 449

STRATEGIES TO REACH THE BEST ADEQUATION BETWEEN FISH AND NEW FEED

New ingredients

INSECTS

MICROALGAE

Insects – Proximate composition

	Tenebrio Wheat worm	Hermétia Black soldier	Fish meal	
Dry matter (%)	96.3	91.5	92.8	
Proteins (% MS)	73.9	61.3	73.0	
Lipids (% MS)	15.9	11.9	11.4	
Energy (kJ/g MS)	24.5	24.7	21.7	
α-glucanes (% MS)	1.2	2.5	0.3	
Phosphorus (% MS)	0.9	1.1	2.1	

Insects – Digestibility

Insect meal	DM	Proteins	Energy	Lipids
Tenebrio	83.4 b	89.9 b	87.2 c	104.4 c
Hermetia	76.6 a	83.0 a	53.9 a	93.7 a
Hermetia + Chitinase	77.3 a	82.9 a	81.2 b	100.4 b
	P<0.001	P<0.001	P<0.001	P<0.001

- Higher digestibility of tenebrio meal → especially for energy
- Enzymatic digestion (☐ chitin) improves energy and lipid digestibility

Insects – Growth performance

- Growth trial at 17°C
- Trout of 50g initial BW
- Fed until satiation (2/day) ad libitum
- Duration 84 days

	Control	T-15%	T-30%	H-15%	H-30%
Fish meal	30.0	15.0	0.0	15.0	0.0
Tenebrio meal	0.0	15.0	30.0	0.0	0.0
Hermetia meal	0.0	0.0	0.0	15.0	30.0

Insects – Growth performance

• Total replacement of FM by insect meal reduced growth performance

CONCLUSIONS

- Good digestibility of tenebrio meal
- Chitinase may be added to improve digestibility of hermetia meal
- No impact on feed palatability (even at 30%)
- 15% → no significant impact on growth
- 30% \rightarrow reduction of growth performances (\checkmark FE) compared to fish meal

NINAqua project (2015-2019) – New Ingredients for New Aquafeeds

Objective: Creating new aquaculture feed enabling companies operating in the French fish-farming industry to be prepared for full substitution of fishmeal and fish oil in aquaculture feed.

NINAqua project (2015-2019) — New Ingredients for New Aquafeeds

Funded by the French "Unique Interministries Fund" and four Regional Councils

Selection and production of new ingredients

Insect

Yeast

Microalgae

Production of new Aquafeeds

Sea bass

Trout

Fish farm sustainability

- **Acceptability**
- Water quality
- Life Cycle Analysis

Impacts on

- **Growth and Metabolism**
- Fish Quality
- Health

