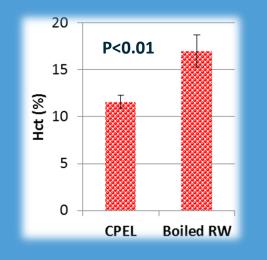
Effect of iron source on the alleviation of KU21 nutritional anaemia in common sole (*Solea solea*)

August 2016, J. Kals, R.J.W. Blonk, H.W. van der Mheen, J.W. Schrama & J.A.J. Verreth

KJ21 abstract number 22866 Kals, Jeroen; 18/08/2016

Effect of iron source on the alleviation of nutritional anaemia in common sole

- Introduction
- Hypotheses
- Material & methods
- Results
- Discussion
- Conclusions



Introduction

- Sole fed commercial pellets (CPEL) suffer from a nutritional anaemia
- An iron (Fe) deficiency is a common cause

- Intake of Fe can be eliminated
- Intake Fe in sole fed boiled ragworm ≈ sole fed CPEL, but Hct sign. higher
- Yet, bioavailability of iron cannot be excluded

Introduction

- Bioavailability iron depends on form (e.g. heme vs. non heme)
- Absorption heme vs. non heme differs as heme
 - has its own pathway
 - independent of pH
 - immune for antagonists (e.g. Ca²⁺)

Fe in CPEL is mainly non heme from premix or damaged heme

KJ22

Alkaline character of sole's intestine might hamper absorption of non heme iron, leading to an iron deficiency?

Diapositiva 4

KJ22 non heme requires reduction of Fe3+ to Fe2+, and hence, an acidic environment Kals, Jeroen; 19/08/2016

Hypotheses

- 1. nutritional anaemia in sole fed CPEL is due to an iron deficiency
- 2. assumed Fe deficiency is due to poor absorption of Fe
- 3. increase in absorption due to a higher bioavailability of heme or iron chelates will alleviate anaemia in sole
- 4. haematocrit (Hct) and haemoglobin (Hb) are expected to follow iron absorption patterns

We also estimated absorption of Cu, Co, Cr, Mn, Mo & Zn to evaluate interaction between iron source and other minerals

Material and Methods

Sole raised on CPEL and anaemic at start

- Dietary treatments:
 - Fe sulphate
 - Fe methionate
 - Fe proteinate
 - Haemoglobin

VESTOCK

- Feeding: restricted, equal feeding levels for all diets
- Tank experimental unit (n=3, 10 fish.tank⁻¹)
- Duration 23 days, sampling at start & day 23

Material and Methods

Formulations	Diet Code	Α	В	С	D
Torritiations	Iron source	Iron sulphate	Heme	Iron proteinate	Iron methionate
	Basal ingredients (%)	57.2	57.2	57.2	57.2
	Test ingredients (%):				
Dietary Fe	Caseine	16.38	9.00	16.35	16.35
	Pea protein conc.	13.00	12.70	13.00	13.00
	Corn gluten	12.50	13.00	12.50	12.50
sources 64%	L-threonine	0.35	0.40	0.35	0.35
basal diet 36%	DL-methionin	0.16	0.30	0.16	0.12
	L-iso leucin	0.00	0.30	0.00	0.00
	Corn Starch	0.27	0.86	0.28	0.34
	Yttrium oxide	0.02	0.02	0.02	0.02
Marker: Yttrium	Iron sources				
	Bovine hemoglobin		6.200		
	Iron sulfate hydrate (20%)	0.101			
	Iron proteinate			0.127	
	Iron methionate				0.106
Processing:	Check	100.00	100.00	100.00	100.00

Cold extrusion was used to keep iron sources in their **native** state

Material and Methods

т

Formulations

- isonitrogenous
- isoenergetic
- equal in

*AA comp.^{KJ12} *total iron _{KJ9} *calcium *taurine *vitamin B12

content.

Iron source		Iron sulphate	Heme	Iron proteinate	Iron methionate
DM	$(g.kg^{-1})$	909	913	920	917
ASH	(g.kg ⁻¹ .dm)	94	92	94	94
СР	,	661	655	669	661
EE		130	122	130	127
CF		6.6	6.6	5.4	5.5
NFE	(())	17.9	37.9	22.2	30.4
Check		909	913	920	917
GE	(MJ.kg ⁻¹)	21.2	21.1	21.5	21.3
CP/GE		31.1	31.0	31.1	31.0
Vit B12	(ug.kg ⁻¹ .dm)	1254	1150	959	1075
Fe	(mg.kg ⁻¹ .dm)	355	323	299	349
Са	(g.kg ⁻¹ .dm)	8	8	8	8
Na	(())	19	19	19	19
Κ	،	6	6	6	6
Mg	(())	2	2	2	2
Cu	(mg.kg ⁻¹ .dm)	12	12	12	12
Со	"	2	2	2	2
Cr	"	5	5	4	5
Mn	"	36	35	38	38
Мо	"	1	1	1	1
Zn	"	119	115	121	120

T T

1 1

¹DM=Dry matter, ASH=Ash, CP=Crude Protein, EE=Ether extract, CF=Crude Fibre, NFE=Nitrogen Free Extract, GE=Gross Energy

Diapositiva 8

- **KJ9** iron content was formulated to be equal to the iron content in ragworm (352 mg.kg-1.dm). Kals, Jeroen; 18/08/2016
- **KJ11** Taurine can affect haematological parameters Kals, Jeroen; 18/08/2016
- **KJ12** Individual amino acids were added to compensate for the amino acid content of the iron sources, especially of the heme iron. Kals, Jeroen; 18/08/2016

Analyses

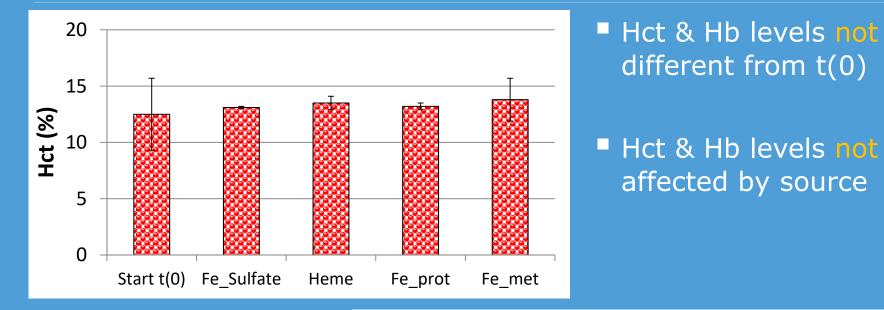
- Hct: centrifuging blood (5 min, 5000g)
- Hb: colorimetric (van Kampen & Zijlstra 1961)
- Minerals:
 - ICP-AES (e.g. Cu, Fe, Mn, Zn)
 KJ25
 KJ26
 KJ26

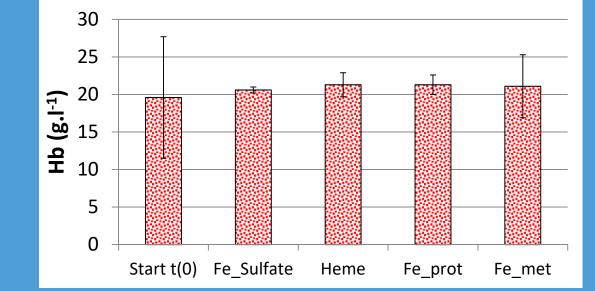
Calculation apparent absorption coefficient (AAC)

 $AAC_{mineral\ (x)} = 100 - (100 * \left(\frac{Yttrium_{diet}}{Yttrium_{faeces}}\right) * \left(\frac{mineral\ (x)_{faeces}}{mineral\ (x)_{diet}}\right)$

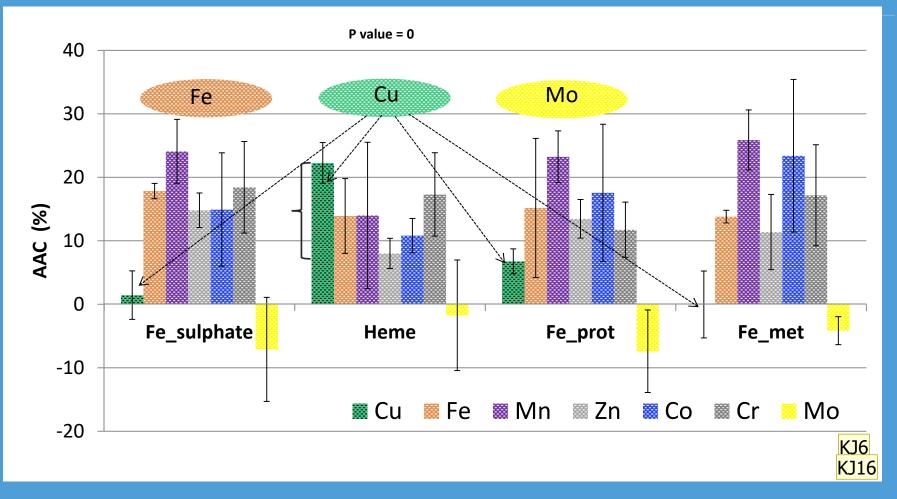
LIVESTOCK RESEARCH WAGENINGEN UR

Diapositiva 9


KJ25	inductively coupled plasma-atomic emission spectrometry
	Kals, Jeroen; 18/08/2016


KJ26 Inductively Coupled Plasma Mass Spectrometry Kals, Jeroen; 18/08/2016

Results Hct and Hb


IVESTOCK RESEARCH

WAGENINGEN UR

Results AAC's

AAC Fe, Mn, Zn, Co, Cr, Mo, except Cu not affected by source

LIVESTOCK RESEARCH WAGENINGEN UR

Diapositiva 11

KJ6 Yet, the iron absorption was high for all sources.

The AAC of Cu was 15-22% higher in sole fed the diet with heme.

Kals, Jeroen; 18/08/2016

KJ16 The negative ADC's of Mo are most likely a result from the relatively high presence of Mo in seawater and the fact that marine fish must drink to keep their water balance in order Kals, Jeroen; 27/07/2016

Discussion

Despite the high absorption of iron, fish stayed anaemic independent of iron source

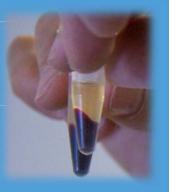
- Implies nutritional anemia is not an iron deficiency anaemia
- The alkaline character of the sole's intestine would hamper the ability to absorb non heme iron
 - >Iron absorption in relation to iron source seems not a limiting factor

Discussion

Hypotheses

- 1) nutritional anaemia in sole fed CPEL is due to an iron deficiency anaemia,
- 2) NA is caused by inadequate absorption of iron,
- 3) **Rise** of iron absorption due to a higher bioavailability of heme and/or iron chelates alleviates anaemia in sole
 - all have to be rejected!
- 4) Hence, hypothesis 4: Hct & Hb levels, follow iron absorption patterns could not be tested

Discussion


- AAC of Cu was high using heme
- none heme Fe & Cu, need DMT1
- Heme is not claiming DMT1 capacity

-> Pos. effect of heme on Cu can be explained by a reduced competitive binding of Cu and non heme Fe claiming DMT1

- Cu is crucial for iron uptake
- AAC of Cu is high in sole fed heme, yet Hct & Hb did not respond

-> nutritional anaemia is not a Cu deficiency anaemia

Conclusions

- Iron absorption is high & independent of iron source
- Heme iron increases absorption of copper
- High absorption of Fe & Cu in sole fed heme did not affect Hct and Hb, suggesting the nutritional anaemia in sole is
 - -> not an iron
 - -> nor a Cu deficiency anaemia

References

- Kals J., Blonk R.J.W., Mheen H.W. van der, Schrama J.W. & Verreth J.A.J. (2015^a). Feeding ragworm (*Nereis virens* Sars) increases haematocrit and haemoglobin levels in common sole (*Solea solea* L.). *Aquaculture Research*, DOI: 10.1111/are.12767.
- -Kals J., Blonk R.J.W., Palstra A.P., Sobotta T.K., Mongile F., Schneider O., Planas J.V., Schrama J.W. & Verreth J.A.J. (2015^b) Feeding ragworm (*Nereis virens Sars*) to common sole (*Solea, solea L.*) alleviates nutritional anaemia and stimulates growth. *Aquaculture Research*. http://dx.doi.org/10.1111/are.12919.
- Kals J., Blonk R.J.W., Mheen H.W. van der, Schrama J.W. & Verreth J.A.J. (2015^c). Effect of different iron sources on the alleviation of nutritional anaemia in common sole (*Solea, solea*). *Aquaculture*. 451: 266-270. http://dx.doi.org/10.1016/j.aquaculture.2015.08.036
- van Kampen E.J. & Zijlstra W.G. (1961). Standardization of hemoglobinometry II. The hemiglobincyanide method.
 Clinica Chimica Acta 6, 538–544.

Thank you!

Thanks to everybody who helped me with the presented work, yet especially,

*Co-authors *Animal caretakers

Questions?

LIVESTOCK RESEARCH WAGENINGEN UR