Using phenotypes of three-breed cross to improve breeding value estimation of purebred animals

Claudia Sevillano,

Mario Calus, Rob Bergsma, Jeremie Vandenplas, John Bastiaansen

Finisher traits

Crossbreds in Genomic prediction

Aim: Improve accuracy of purebred breeding values estimates Idea: Selection of pure lines based on crossbred performance

Effects of SNPs may be breed-specific because of different genetic backgrounds

Breed specific SNP effects

Background	New approach	Results part1	Results part2	Conclusions

Model for purebred and crossbred performance with G-matrix (G model)

Multivariate (4-traits):

	Response variable	Fixed effects		Litter effect	Additive effect	Residual
(Sire Line) 1.	$y_S =$	$X_S b_S$	+	$W_S u_S$ +	$Z_{S} \boldsymbol{a_{S}}$	$+ e_S$
(Landrace) 2	$y_{LR} =$	$X_{LR}b_{LR}$	+	$W_{LR} u_{LR} +$	$Z_{LR} \boldsymbol{a_{LR}}$	$+ e_{LR}$
(Large White) 3	$3. y_{LW} =$	$X_{LW}b_{LW}$	+	$W_{LW} u_{LW} +$	$Z_{LW} \boldsymbol{a_{LW}}$	$+ e_{LW}$
(Crossbred) 4	$y_{CB} =$	$X_{CB}b_{CB}$	+	$W_{CB} u_{CB} +$	$Z_{CB} \boldsymbol{a_{CB}}$	$+ e_{CB}$

Background	New approach	Results part1	Results part2	Conclusions

Model for purebred and crossbred performance with partial relationship matrices (**BOA model**)

Multivariate (4-traits):

Background

Assigning breed-of-origin of alleles in three-breed cross pigs

Results part1

New approach

Background

Results part2

CrossMark

Assigning breed-of-origin of alleles in three-breed cross pigs

Sire Line	Landrace Line	Large White Line	F1	Finishers	Total
Ø	ð.		S		
2825	4179	7183	1354	1723	17,264

Results

Paternal		T . (.)		
Sire Line	LR Line	LW Line	Total	Iotai
49.6	23.0	22.7	45.7	95.2

- Average assignment of the alleles were similar across the 18 chromosomes.
- Average assignment rates were also similar across finishers.

Validation of the model

Sire line

Cross-validation (4X)

BackgroundNew approachResults part1Results part2Conclusions

Results

Average daily gain

Model	h_S^2	h_{CB}^2	$r_{g_{S-CB}}$	r _{IH}
BOA	0.23	0.33	0.49	0.11
G matrix	0.28	0.33	0.52	0.08

Back fat

Loin depth

Model	h_S^2	h_{CB}^2	$r_{g_{S-CB}}$	r _{IH}	Model	h_S^2	h_{CB}^2	$r_{g_{S-CB}}$	r _{IH}
BOA	0.31	0.28	0.74	0.20	BOA	0.42	0.26	0.53	0.17
G matrix	0.36	0.37	0.73	0.24	G matrix	0.47	0.23	0.57	0.21

Background	New approach	Results part1	Results part2	Со

Conclusions

Assign of breed-of-origin of alleles

Breed-of-origin of alleles of three-breed cross animals can be derived.

It is feasible to use breed-specific SNP effects models in genomic prediction.

Model for purebred and crossbred performance

No big improvements with BOA model, maybe because of high r_{gPB-CB} and limited training data size.

THANK YOU

claudia.sevillanodelaguila@wur.nl

