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 Selective breeding of high-yielding dairy cows 

 up to 60 kg milk per day 

 High energy demand can not be fully covered by food intake 

 negative energy balance during their early lactation 

 Mobilization of body fat, protein and mineral stores 

 adaptation of the hepatic metabolism 
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Motivation – Background 
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Why does the success of adaptation differ substantially between cows - 

even under the same conditions and similar production levels?   

Ingvartsen et al. (2003) 

Drackley et al. (2005) 

Graber et al. (2010) 

? 
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Motivation – Metabolic Adaptation 
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Project OnlyRobust – Overview 

 

  

 
Goal: Identification of candidate genes and pathways important for the 

metabolic adaptation 

Study 1: Genomic Level: 

„Gene-based mapping and pathway analysis of metabolic traits in dairy cows“  

(Ha et al., 2015) 

 

 

Study 2: Transcriptomic Level: 

„Whole liver transcriptome analysis for the metabolic adaptation of dairy cows“  

(in preparation) 
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Identification of genes und pathways, important for metabolic 

adaptation during the transition period 

 

Data: 

 Liver samples of 6 dairy cows at different points of time: 

 

 

 

 

 

 RNA-Sequencing 

-3 weeks (T1)  +2w (T2)  +3w (T3)  

Differential Gene Expression and Pathway 

Analysis: 

T1 vs. T2 

T1 vs. T3 

T2 vs. T3 5 

Data – Experiment Design 
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Data – RNA-Seq 
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gene 1 gene 2 

Bos Taurus  

(UMD 3.1, release 85) 

2 Counts 4 Counts 

Count-Matrix (after mapping and counting of the reads):  

Sample 1 Sample 2 Sample 3 … 

Gene 1 26‘432 20‘422 19‘543 … 

Gene 2 0 24 3 … 

Gene 3 245 432 332 … 

… … … … … 

(Trimmomatic  V0.33, Bolger et al., 2013) (STAR  V2.4,  

Dobin et al., 2013) 
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RNA-Seq – Pipeline 
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Differential Gene 

Expression 

Analysis (DGEA) 

ante- 

partum 

post- 

partum 

KEGG pathways 

List of differentially 

expressed genes 

Gene Set 

Enrichment 

Analysis (GSEA) 

Weighted Gene 

Co-expression 

Network Analysis 

(WGCNA) 
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Analysis of RNA-Seq 

 

  

 



9 

Differential Gene Expression Analysis (DGEA): 

 
 Generalized Linear Model using negative Binomial distribution  

     („edgeR“, Robinson und Smyth, 2008) 

 

log 𝑌 = 𝜇 + 𝜏1cow1 +⋯+ 𝜏6cow6 + 𝛽condition + log𝑁 

 

 Y = #counts per gene, N = #counts for all genes in a sample 

Gene Set Enrichment Analysis (GSEA, Subramanian et al., 2005): 

 

gene in pathway gene not in pathway 

important not important 

Maximum = Enrichment Score 
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Methods – DGEA and GSEA 
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Results – DGEA and GSEA 

 

  

 

 ~1,000 significant genes (FDR < 5%) 
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Weighted Gene Co-expression Network Analysis (WGCNA): 

 

 

 

correlation matrix  

between all  

significant genes 

weighted network  

of interconnected genes 

power transformation 

topological overlap matrix 

gene modules =  

set of tightly connected genes (Langfelder and Horvarth, 2008) 11 

Methods – WGCNA 
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 15 modules detected (~1,000 significant genes) 
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Associated Gene Ontologies  

• lipid transport  

• lipoprotein metabolic process 

• positive regulation of fatty acid 

biosynthetic process 

Results – WGCNA 
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 ~10% of the ~10,000 genes expressed in the liver are significant 

comparing ante- vs. post-partum   

 importance of liver metabolism for adaptation 

 

 major hepatic changes involved in gluconeogenesis and lipid 

mobilization (PC, FGF21, „adipocytokines signaling pathway“) 

 

 significant pathways (e.g. „steroid hormone biosynthesis“) indicate 

immunological changes 

 

 identified 15 modules with different expression patterns 

 may have different roles in the metabolic adaptation 
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Conclusions 
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 ~10% of the ~10,000 genes expressed in the liver are significant 

comparing ante- vs. post-partum   

 importance of liver metabolism for adaptation 

 

 major hepatic changes involved in gluconeogenesis and lipid 

mobilization (PC, FGF21, „adipocytokines signaling pathway“) 

 

 significant pathways (e.g. „steroid hormone biosynthesis“) indicate 

immunological changes 

 

 identified 15 modules with different expression patterns 

 may have different roles in the metabolic adaptation 
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Conclusions 
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Normalization and modelling of count data 

Mapping on reference genome (BT, UMD3.1 

rel.85) 

Quality Control and Trimming 

Counting reads overlapping exons 

DGEA, GSEA and WGCNA 

STAR: 

~ 94% Mapping-Rate 

~ 22M Fragmente   

featureCounts: 

~ 17M Counts 

R-Paket edgeR: 

TMM, GLM 

FastQC and  

Trimmomatic 
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RNA-Seq 
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Gene-Set Enrichment Analysis (Subramanian et al., 2005) 

gene in pathway gene not in pathway 

important not important 

Maximum = Enrichment Score 

-log10(p−value) 
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GSEA 
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Differential Gene 

Expression 

Analysis (DGEA) 
Condition 1 Condition 2 

Gene Set 

Enrichment 

Analysis (GSEA) 
KEGG pathways 

Weighted Gene 

Co-expression 

Network Analysis 

(WGCNA) 

Results: 

List of differentially 

expressed genes 

List of differentially 

expressed pathways 

Sets of co-expressed 

genes differentially 

expressed  20 

Analysis of RNA-Seq Data 
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Pathway Analyse – Ergebnisse  
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Mappen der Reads – STAR vs Tophat2  

 

  

 

Reference genome und gene annotation:  

 Ensembl UMD3.1 Release 85 

 24‘616 genes (19‘994 coding)  

 

STAR  

  

• fast (~20 min) 

• suggested by GATK Best 

Practices  

• high mapping rate    

(Engström et al., 2013) 

 

 

• Mapping-Rate: ~94% 

 

 

 

 

Tophat2 

 

• slow (~12 h) 

• high mapping rate (Kim et. 

al., 2013) 

• high rate of false positives 

(Dobin and Gingeras, 2013) 

 

 

• Mapping-Rate: ~81% 

In our study minor differences 
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Qualitätskontrolle – FastQC  

 

  

 

RNA fragment 

Forward Read: 101 bp Reverse Read: 101 bp 
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Results 

 

  

 


