Effects of a by-pass Omega-3 source on milk yield, milk composition and fertility

Escribano AJ, Mallo JJ, Quintela M ajescribano@norel.net

Agenda

1. Background

2. Product development

3. Field trial

4. Discussion, Conclusions and Further research

Background. Consumer's behaviour

• Increasing consumers' demand towards healthier food

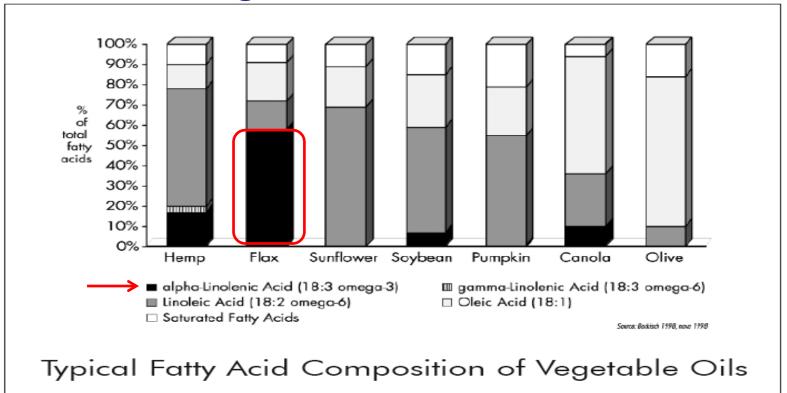
• Omega-3 & cardiovascular diseases, neurological health, immunity, cancers (Abuajah *et al.*, 2014)

Background. Farmer's side

• Better reproductive performance: the use of flaxseed improves cows fertility in 50.3% with respect to sunflower seed (Ambrose *et al.*, 2006)

Background. Farmers and market

• Omega-3milk products: premium price

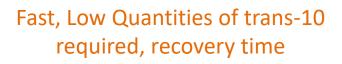


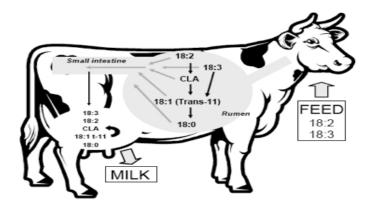
How to do it:

anima

nutrition

Sources of Omega-3


... It seems easy, let's include linseed


PROBLEMS!

• Ruminal toxicity – feed efficiency

•MILK FAT DEPRESSION (MFD) and protein

Necessity to develop products that allow protecting Omega-3 against rumen biohydrogenation Hi-FLAX®

In vitro trial

ASSESSMENT OF PROTECTION AGAINST RUMINAL BIOHYDROGENATION OF DIFFERENT FORMS OF FLAXSEED

Fatty acid	T2: Flax oil	T3: Calcium soap of flax fatty acids	T4: Absorbed flax oil	T5: Extruded linseed	T6: Hi-FLAX
% CF	100	78.4	65.4	25.1	95.2
C18:3 content on the sample (%)	51.66	28.24	52.27	48.51	13.88
C18:3 by-pass (<i>in vitro</i>) (% of the previous –of the initial content)	19.9	18.7	15.2	17.9	30.5
FINAL BY-PASS C18:3 (grams of C18:3 per 100 grams of product)	10.28	4.14	5.20	2.17 ← + 85	→ 4.02 •.25%
Although the final content is OK, they are not well-protected:		ected: 95%*1	95%*13.88%*30.55% = 4.02		
-toxic for rumen microbiota and - decrease in milk fat %		25%*4	48.5%*17.90	0% = 2.17	

Filed Trial

Substitution of <u>extruded linseed</u> to Hi-FLAX®

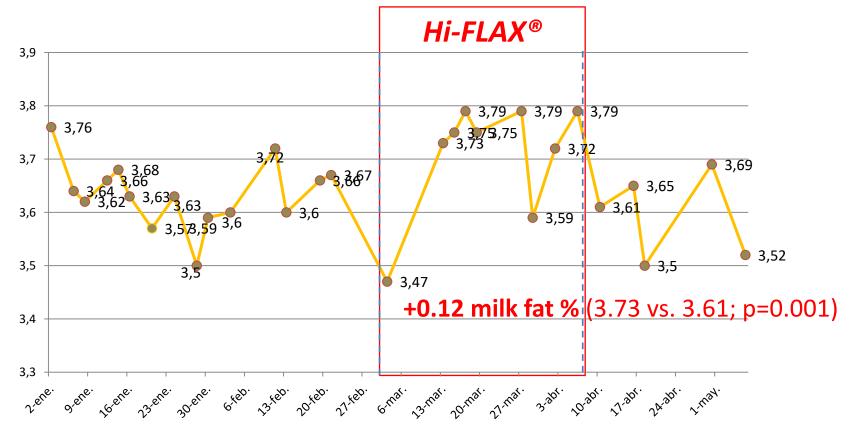
Methodology

- Farms and cows selected
 - One dairy cow farm, Galicia (NW Spain)
 - 102 milking Holstein cows
 - Average milk yield per cow = 33 liters/cow/day in the previous months
- Production systems and milking management
 - Cows were housed in cubicles and dry lots
 - 2-3 milking times
- Diets (isoenergetic and isocost)

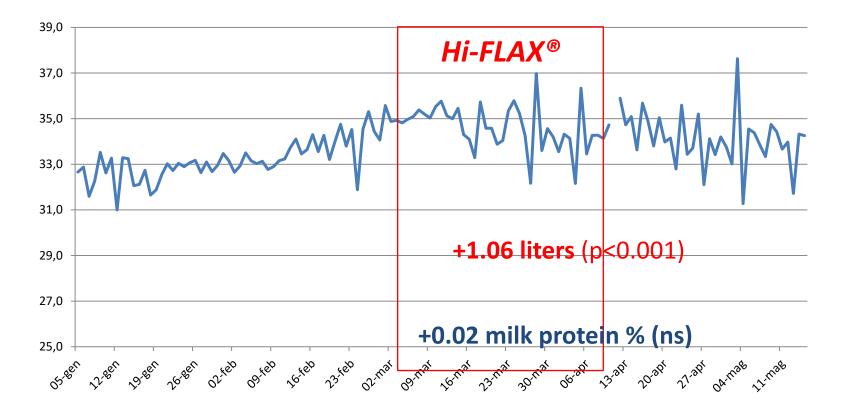
Feed materials	Control diet Concentrate (kg)	Exp. Diet (Hi-Flax®) Concentrate(kg)	
Rapeseed meal	310	360	
Corn silage	230	252.2	
Soy 44	220	224	
Extruded Linseed/Hi-Flax	100	50	
Barley	50	45	
Soy oil	30	8.5	
CaCO3	30		
Urea	13		
Mineral premix	7		
NaCl	8.5		
E. oil	1		
Mold inhibitor	0.5		

Nutritional analysis	Control diet (DM)	Exp. Diet (Hi-Flax®) (DM)		
ENI (kcal/kg)	1,782.69			
CP (%)	28.23	28.24		
RDP (%)	15.71	15.28		
RUP (%)	12.52	12.96		
ADF (%)	8.67	8.61		
NDF (%)	14.96	14.02		
NFC (%)	32.10	32.90		
Starch (%)	18.78	18.89		
CF (%)	7.75	7.91		
Ca (%)	1.	1.46		
P (%)	0.66	0.65		
Mg (%)	0.32	0.31		
C18:3 (%)	1.86	0.80		

Methodology


• Duration of the trial and dates

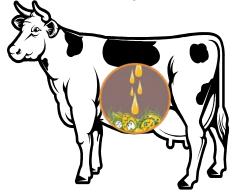
	Dates (2015)
Period 1 (Control period 1)	12nd Jan – 2nd March
Period 2 (Experimental period)	3th March-7th April
Period 3 (Control period 2)	8th April-6th May


• Sampling and analysis

• Data for milk fat, milk protein, milk yield, urea, and Gr/Pr were taken daily. Fatty acid profiles were taken weekly

Results

Results



Results: Rates of transference to milk

	Transfer from C18:3n3 source to milk
Control diet	8.18%
Experimental diet (Hi-FLAX [®])	13.48% (164.42%)

Discussion, Conclusions & Further research

- H-FLAX[®] is a useful tool for the dairy sector in order to:
 - Reduce the negative interactions between feeding PUFAs and ensuring a healthy rumen environment
 - Achieving the levels of milk fat required by the industry
 - Increasing Omega-3 transfer rate: which is useful for milk sales price, immunity and reproduction

Discussion, Conclusions & Further research

• Reproduction:

- Theoretical improvement based on literature: Use of feed materials with a high content in Omega-3, such as flaxseed, improve cows fertility in 50.3% with respect to sunflower seed (Ambrose et al., 2006). Due to the great protection of HI-FLAX's fatty acids, reproductive performance may be even higher
- Future research assessing on farm effects is need (2017)

THANK YOU VERY MUCH FOR YOUR ATTENTION

Alfredo J. Escribano, PhD Product Manager for Ruminants ajescribano@norel.net