ETH zürich

Partitioning of rumen-protected n-3 and n-6 fatty acids in bovine muscles with different metabolism

<u>Christina Wolf</u>, K. Giller, S.E. Ulbrich, M. Kreuzer, J. Berard EAAP 2016, 29th Aug – 02nd Sept

Ruminants

Animal diet

Animal tissue

n-3 and n-6 FA

Animal diet

Metabolism

Animal tissues

e.g., AA (C20:4n-6) EPA (C20:5n-3) DHA (C22:6n-3)

Low conversion rate!

LA (C18:2n-6) ALA (C18:3n-3)

. . .

Background

- Enrichment of n-3 FA in body tissues
- Different fat and muscle tissues in cattle

Background

Research Questions

- 1. What is the efficiency of enrichment of rumenprotected n-3 FA and n-6 FA in beef lipids?
- 2. Do proportions of n-3 and n-6 FA in differently located beef muscle lipids vary?
- 3. Are there interactions between diet and muscle type for n-3 and n-6 FA?

Angus Heifers (n = 9+9)

- 411 ± 46 kg live weight at slaughter
- 17 ± 4.4 months of age

photo by K. Giller

Diet

- 8 weeks
- Straw-based roughage
- Coated fat supplements *

- 7.45 kg/day
- 7.00 kg/day
- 0.45 kg/day
- Fish oil
- Sunflower oil

* Erbo Spraytec AG:
Coating matrix = hydrogenated rapeseed oil (melting point 67°C), brought into powder form by spray chilling

Diet

• Fish oil rich in n-3 FA; sunflower oil rich in n-6 FA

n-FA composition of supplements

Muscle

Sampling

Slaughter dates

Longissimus thoracisLTBiceps femorisBFExtensor carpi radialisECR

n = 3

Muscle

Fat concentrations in muscles

Analyses

Intramuscular fat

- Fat content in muscles (Soxhlet fat extraction)
- Fatty acid profile (gas chromatography) as fatty acid methyl esters (FAME) in % of intramuscular fat

Statistics (SAS)

Mixed Model

Fixed effects

diet, muscle, diet x muscle

Random effect

slaughter date (n=3)

Multiple comparisons among means: Tukey-Kramer

Diet and muscle effect on intramuscular n-FA

Diet x Muscle interactions for individual n-3 FA

Diet x Muscle P < 0.01

Diet x Muscle P < 0.001

Conclusion

 FA from rumen-protected supplements were efficiently transported into muscle tissue.

 Partitioning of n-3 and n-6 FA is different for the selected muscles.

 Only a trend for an interaction between diet and muscle was found for the sum of n-3 FA, but this was significant for EPA and DHA.

Physiological relevancy of n-3 FA distribution

Physiological relevancy of n-3 FA distribution

Thanks to: Erbo Spraytec AG Lab Team

for providing coated supplements Animal nutrition, ETH Zurich

Thank you for your attention!

Appendix – M&M

- Fat content in muscles
 Soxhlet fat extraction with HCl decomposition
- Gas chromatography of muscles

Varian capillary column CP-7421
HP 6890N GC 200m x 0.25mm x 0.25µm; Agilent Techn.
200m column; CP-7421 autosampler;
split injector «30:1»;
H2 flow rate: 1.7ml/min;
air flow; 400 ml/min;
initial oven temperature 170, increased to 250°C

Fatty Acid Profile Mean \pm Standard Deviation

	Fish Oil		Sunflower Oil			
Diet	Forage	Supplement	Forage	Supplement		
(g/100 g total FAME)						
∑ n-3 FA	$13.0~\pm~2.3$	$16.9 ~\pm~ 1.8$	$4.04\pm\ 1.06$	0.18 ± 0.03		
∑ n-6 FA	5.6 ± 1.1	1.4 ± 0.1	$15.0~\pm~1.00$	18.3 ± 2.47		
Σ SFA Σ MUFA Σ PUFA	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	67.5 ± 5.30 14.0 ± 2.77 18.5 ± 2.53		
n6/n3 FA	0.5 ± 0.2		$3.92\pm\ 0.98$			

Growth performance of Angus heifers supplemented with rumen-protected fish (n-3) and sunflower (n-6) oil.

Diet	n-3	n-6	SEM	P-values
Total weight gain (kg)	62.6	61.8	15.78	0.937
Average daily weight gain (kg)	0.464	0.470	0.0763	0.957
Feed Conversion Rate %	0.062	0.063	0.0104	0.956

Appendix - Results

Carcass characteristics and organ weights of Angus heifers supplemented with rumen-protected fish (n-3) and sunflower (n-6) oil.

Diet	n-3	n-6	SEM	P-values
Carcass characteristics				
Life weight at slaughter (kg)	419	406	12.8	0.362
Hot Carcass weight (kg)	217	205	7.0	0.117
Cold carcass weight (kg)	212	201	6.8	0.100
Dressing percentage	51.7	50.9	0.55	0.275
Organ weights (kg)				
Heart	1.60	1.48	0.042	0.045
Liver	4.25	4.00	0.193	0.182
Spleen	0.77	0.66	0.035	0.017
Kidney	0.37	0.36	0.014	0.682
Lungs	2.42	2.27	0.108	0.327

Appendix - Results

Chemical composition of Angus heifers supplemented with rumen-protected fish (n-3) and sunflower (n-6) oil.

Muscle	Longis thorac	ssimus cis	Bicep femo	s ris	Extens carpi ra	or adialis	SEM	P-valu	es	
Diet	n-3	n-6	n-3	n-6	n-3	n-6		Diet	Muscle	Diet × muscle
Dry matter	25.3	24.6	24.9	24.4	21.8	21.9	0.402	0.135	<0.001	0.481
Ash	1.29	1.35	1.64	1.62	1.59	1.53	0.116	0.923	<0.001	0.423
Nitrogen	3.47	3.47	3.23	3.26	3.13	3.23	0.047	0.115	<0.001	0.252
Fat ¹	2.42	1.97	2.65	2.21	0.804	0.553	0.2381	0.012	<0.001	0.864

¹ Soxhlet method with hydrochloric acid decomposition