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Assessing the milk origin within Wallonie

PDO linked area
already defined

Data ?

Methodology ?




Assessing the milk origin within Wallonie

- A PDO linked area
Buffer area P “ already defined
(+£25 km)

Data ?

Methodology ?




Are data available ?

O Milk delivered to dairies
0 Bulk milk sampling =2 Milk composition to set the price
0 Mid Infrared (MIR) spectrometry analysis = Fast and cost-efficient




How to discriminate milk from the 2 areas ?

0 1t data editing
» Bovine raw milk bulk samples from January 2012 to December 2015
» Standardized MIR spectra (Grelet et al., 2015)

0 Partial Least Square Discrimination Analysis (PLS-DA)
» Pretraitment: Savitsky-Golay 15t derivative (5 wavenumbers window size)

» PLS Toolbox (Eigenvector research, Inc.)

Many data & sampling every 2-3 days
D ——————_—



Editing of the daily datasets
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O External validation dataset

» Samples collected today




Editing of the daily datasets
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0 Calibration dataset
» 5 days window
» 1 sample randomly selected per producer

> Producer not included in validation dataset



Editing of the daily datasets
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1 640 calibrations by PLS-DA

Daily correct classification rates
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1 640 calibrations by PLS-DA

Daily correct classification rates
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Characteristics of the 1 640 models

Cross-
Validation

Correct classification rate 79.9 % (+1.6)
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Specificity 81.1 % (+1.9)
non-PDO samples
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Characteristics of the 1 640 models

Cross- ey e

Correct classification rate 79.9 % (+1.6) 75.4 % (£3.2)
Correct classified PDO samples
Sensitivity 78.1 % (12.0) 69.4 % (17.6)
PDO samples

Correct classified non-PDO samples
Specificity 81.1 % (+1.9) 79.8 % (16.1)
non-PDO samples

Correct classified PDO samples
Positive Predicted Value 74.1 % (+2.2) 71.4 % (+6.0)
Classified PDO samples

Correct classified non-PDO samples

Negative Predicted Value 84.3 % (+1.7) 78.6 % (+4.8)
Classified non-PDO samples




Varying results between milk producers

Frequencies for each class of correct classification rate by producers in 2014
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Varying results at zip code area level

Winter 2013-2014 Summer 2014




Main land uses

Correct Winter 2013-2014 Summer 2014
classification

rate {?

B 0.00-10.0
B 10.0-20.0
B 20.0-30.0
[ 30.0-40.0
[ 40.0-50.0
] 50.0-60.0
[] 60.0-65.0
[] 65.0-70.0
] 70.0-75.0
[ 75.0-80.0
[ 80.0-85.0
B 85.0-90.0
B 20.0-95.0
Bl 95.0-100.0

Maize for silage Grassland




Take home message

O Feasability to discriminate milk samples
» Produced in 2 areas from Walloon Region
» Based on MIR spectra
» Daily PLS-DA models
» 70-80 % of corrrect classification, sensitivity and specificity

0 Results linked to pedoclimatic conditions and to main land uses for
feeding dairy cows
» Grassland
» Maize for silage
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