

Novel milk phenotypes based on a biological model of lactation – a synthesis

Geoff Pollott

Introduction

RVC C

- Lactation models have tried to use the underlying biology of the animal to describe the lactation curve (Dijkstra et al, 1997; Pollott, 2000)
- The use of such models may provide more information on which to base selection or management decisions than the methods currently used
- > Can we measure components of the lactation curve from milk samples?
- Synthesis of work from 3 JDS papers and 2 EAAP presentations plus one 'in press' publication

Milk yield is the result of three major biological processes

- > Mammary cell production and differentiation
- > Milk secretion rate per cell
- > Cell death rate

RVC

Lactation curve

Daily milk yield

Milk yield (M) on day t of lactation is:

Number of differentiated parenchyma cells (NDPC)

minus

Number of differentiated cells dying (NDCD_t)

multiplied by

Cell secretion/offtake rate (S_t)

 $M_t = (NDPC - NDCD_t) S_{Mt}$

If we could measure one or more of the these processes then we may be able to gain more control over milk production

Daily milk yield

Milk yield (M) on day t of lactation is:

Number of differentiated parenchyma cells (NDPC)

minus

Number of differentiated cells dying (NDCD_t)

multiplied by

Cell secretion/offtake rate (S_t)

 $M_t = (NDPC - NDCD_t) S_{Mt}$

 $NDPC = (M_t / S_{Mt}) + NDCD_t$

Estimating NDCD

Number of cells dying

- Apoptosis likely to be cause of decline in milk production in late lactation
- Commonly measured as persistency
- Extracellular vesicles (EV) formed by apoptosis
- Sumple Can we measure EV in milk to estimate apoptosis rate?

Extracellular vesicles

- EV membrane-bound vesicles of less than 1µm diameter released from many different cell types
- Formed by blebbing of the parent cell membrane
- During cell membrane blebbing and EV formation phospholipids become exposed on the outer leaflet of the plasma membrane and the outer surface of the microparticle
- Presence of these normally hidden molecules allow the detection of microparticles by binding to specific markers (annexin V (AV) and merocyanin 540 (MC))

Correlations between persistency and the regression slope of the 4 microparticle densities on DIM for each cow (n = 12)

	Persistency	Total	Both+	AV+
Total	-0.65			
Both ⁺	-0.32	0.37		
AV+	-0.50	0.69	0.85	
MC+	-0.49	0.76	0.71	0.74

Correlations which were > 2 SE shown in bold

AV⁺ = Annexin-V positive microparticles; MC⁺ = MC540 positive microparticles;

Both⁺ = microparticles positive for both Annexin-V and MC540; Total = all microparticles.

Cow EV densities by days in milk

EV density and persistency

Number of differentiated cells dying

- > Persistency related to EV in milk
- Relationship between EV and 'apoptosis' parameter needs defining
- Also the factors which affect it or cause variation need investigating

RVC C

Estimating milk secretion rate per cell

Proposed secretion rates throughout lactation (Pollott, 2004)

Gene expression study throughout lactation

New question: Can we use gene expression levels as an indicator of secretion rate throughout lactation?

Supplementary question: Can we do this with samples from a commercial herd?

SVC

14 genes studied

- Lactose B4GALT1, LALBA, UGDH, UGP2
- > Prolactin JAK2
- > Protein CSN1S1, LALBA
- Sell cycle etc. ARNTL2, CYSLTR2, FOXH1, UTRN
- > Fat ACACA, DGAT1, FASN, SCD

Differences found in gene expression levels between cows for all genes except DGAT1

Lactose genes

Prolactin genes

Correlations between gene expression and lactation curve parameters across cows

	Level of milk production (cow	Rate of increase in milk production	Rate of decrease in milk production
	effect)	in early lactation	(apoptosis?)
ACACA		0.61	
ARNTL2	0.24		
CSN1S1		0.20	-0.21
CYSLTR2		-0.52	
FASN			-0.53
FOXH1	0.27		-0.48
LALBA		0.32	
SCD		0.49	-0.37
UGDH	0.27	-0.20	
UTRN	0.24		-0.35

Implications

- > RNA can be extracted from milk with biologically credible results
- Gene expression of several key genes varies across lactation
- Further analyses required to determine if GER can be used to estimate secretion rate in lactation
- GER in some genes related to lactation curve parameters

Daily milk yield- conclusions

Milk yield (M) on day t of lactation is:

Number of differentiated parenchyma cells – only estimable

minus

Number of differentiated cells dying – measureable with EV?

multiplied by

Cell secretion/offtake rate - constant but varies between animals

Conclusions

- Encouraging start to investigating phenotypes in milk that may relate to lactation curve characteristics
- More work required on more cows in different environments to see how relationships vary
- Probably number of mammary cells produced has biggest effect on milk production