

Gembloux Agro-Bio Tech Université de Liège

Going beyond current limits in defining and using milk infrared spectra based phenotypes

N. Gengler, H. Hammami, A. Lainé

ULg - GxABT, Passage des Déportés 2, 5030, Belgium nicolas.gengler@ulg.ac.be

Last Presentation for Today ③

Last Presentation for Today ③

 Since 14:00 many aspects were presented in this session:
 Novel milk-based phenotypes for use in breeding and management applications in dairy production

Several presentations describing use of milk infrared data

But: are there still issues we might have missed?

Milk Infrared Spectral Data

First issue: type of spectra (not aim of this talk)

- > Mid-Infrared (MIR)
 - □ Still spectrometers rather expensive !!
 → limits the use of MIR outside of labs
- > Near-Infrared (NIR)
 - On-farm on-line alternative
 - Appearing in commercial tools
 - More research needed to extend its use

FOSS

Milk Infrared Spectral Data

Second issue: defining phenotypes

- ➤ Classically → calibrating against reference data
 - Spectral data is used as a predictor for a trait of interest
- > Alternatives
 - Spectra (wavenumbers) becoming traits describing phenotypic and genetic variations (already seen today)
 - **But we can go even further (aim of this presentation)**

Spectra becoming response variables to known factors: Response → Trait

Spectra as Response Variables

Considering spectra (wavenumbers) as traits

- > Proof of significant phenotypic variation
- > But also genetic variation¹

¹ e.g. Soyeurt et al. [2010] - JDS 93: 1722-1728; Dagnachew et al. [2013] - JDS 96: 3973-3985

- Now the 1st question is:
 - > What drives the phenotypic variation?

Sources of Phenotypic Variation

Sources of Phenotypic Variation

Spectra Responding to Stress

□ Leads to 2nd question:

How to link responses of milk yield and composition to external and internal stress factors ?

Concept of "Reaction Norm" defined as:

> Phenotypic expression of a "genotype" across a range of "environments"

Reaction Norm

Level of external or internal stress

EAAP 2016 - 67th Annual Meeting of the EAAP, Belfast UK, 29 Aug - 2 Sept 2016

Two Examples

Reaction of a given response variable to (2 examples):

- > External stress: Heat Stress
 - Response to a given level of temperature-humidity (THI)
- > Internal stress: Gestation

Response to a given length of gestation

- □ Leads to the 3rd question:
 - How to pass from individual phenotypic responses to indicators of genetic robustness to external and internal stress factors

Animal A vs Animal B

EAAP 2016 - 67th Annual Meeting of the EAAP, Belfast UK, 29 Aug – 2 Sept 2016

Genetic Reaction Norm Models

- \Box y_{ij} = common factors ...+ a_{0i} + f(j) x a_{1i} +.... where
 - Common factors = other needed fixed and random effects
 - > y_{ii} = response j of animal i
 - $> a_{0i}$ and a_{1i} = random genetic effects of animal i
 - > f(j) in our 2 examples:
 - □ $f(j) = THI (TD_j) 62$ = 0 □ f(i) = days carried calf at TD if program
 - f(j) = days carried calf at TD_j if pregnant
 = 0 if not-pregnant

External Stress: Heat Stress

Continuation of studies done by Hedi Hammami

> Results here primers on material in the pipeline

Data

- > 205,987 TD records
 - Image: Milk yield, fat%, protein% and 1060 wavenumbers
- > THI values of 3-d lag correspondant to each TD
- > 29,467 primiparous Walloon Holstein cows

Ratio of Slope / Intercept Variances for Wavenumbers

Spectra - Wavenumbers (cm⁻¹)

EAAP 2016 - 67th Annual Meeting of the EAAP, Belfast UK, 29 Aug - 2 Sept 2016

Relative Ratio of Slope / Intercept Variances

Conventional traits

Spectra - Wavenumbers (cm⁻¹)

EAAP 2016 - 67th Annual Meeting of the EAAP, Belfast UK, 29 Aug - 2 Sept 2016

Other Opportunities (HS+ vs HS-)!

EAAP 2016 - 67th Annual Meeting of the EAAP, Belfast UK, 29 Aug - 2 Sept 2016

Internal Stress: Gestation

Continuation of studies done by Aurélie Lainé

> Results here primers on material in the pipeline

Data

- > 56,902 TD records
 - Milk yield, fat%, protein% and 5 wavenumbers, identified for showing highest phenotypic response
- \succ Confirmed gestations \rightarrow confirmed days carried calf
- > 9,757 primiparous Walloon Holstein cows

Relative Ratio of Slope / Intercept Variances

Conventional traits	Spectra - Wavenumbers (cm ⁻¹)
----------------------------	---

Conclusions - I

- Examples showed alternative "model based" definition of MIR spectra based "phenotypes"
 - > Reaction to "stress"

Novel class of "model-based" biomarkers

Conclusions - II

- **□** First results of on-going studies
- Comparison of MIR wavenumbers with yield and traditional components showed potential
- Heat-stress:
 - > Optimizing MIR signal necessary (and possible)
- **Gestation**:
 - Some wavenumbers showed stronger signals than conventional traits

Next Steps

Validation of basic hypothesis

- > Are animals reacting less also more resilient ?
- Moving models to genomics \rightarrow single-step GBLUP
 - > Straight forward for "model based" phenotypes
- Developing correct use of this novel class of phenotypes (biomarkers):
 - Transferring genetic slopes into EBV for resilience (specific and/or general)
 - > Using EBV directly or indirectly (most likely) in breeding programs (and dairy cattle management)

Acknowledgements

- Support of the Futurospectre partnership
 - > AWE Comité du Lait CRA-W ULg-GxABT
- CECI Consortium for computational resources
- Service Public de Wallonie (SPW DGO3, Belgium)
- National Fund for Scientific Research fns
- Support by different European Projects:

Genotype plus Environment Integration for a more sustainable dairy production system

The content of the presentation reflects only the view of the authors; the Community is not liable for any use that may be made of the information contained in this presentation.

EAAP 2016 - 67th Annual Meeting of the EAAP, Belfast UK, 29 Aug - 2 Sept 2016