Animal-human-technology interactions: novel means of phenotyping cattle health and welfare

Uta König v. Borstel
Chair Livestock Production Systems
University of Göttingen

Status quo behaviour & health traits

Health traits:

- Generally recorded via indicator traits (somatic cell score, conformation,...)
- > limited selection response
- Exceptions: e.g. Scandinavia

Relative weight of different traits in overall breeding value

Status quo behaviour & health traits

Health traits:

- Generally recorded via indicator traits (somatic cell score, conformation,...)
- > limited selection response
- Exceptions: e.g. Scandinavia

Behaviour traits (Temperament):

- Culling of negative extremes by farmers
- Breeding values for milking temperament, milkability (selection intensity?)
- Recording via scores, speed of milking

Behaviour traits in dairy cattle

- Selection for behaviour driving force in domestication
- Generally $h^2 \sim 0.1 0.4$ (KVB, 2013)

• Problems:

- Evaluation manually & time consuming, heifers only
- Behaviour by definition plastic
- Subjective evaluations

Comparison of objective and subjective methods for temperament recording Inter- and intra-observer reliability of different methods recording temperament in beef and dairy of the recording temperament in the recording tempe

 Generally, superior inter- and intra observer reliabilities for subjective assessment methods (visual analogue scale)

Still: manual recording -> time consuming

Cows reaction to touching the udder as indicator for milking behaviour

Recorded primi- and multiparous cows (n = 1141)

Repeatability: 0.31

Heritability: 0.10

- Phenotypic correlation to conventional milkability: 0.32
- -> possibility to increase reliabilities of breeding values

Cows reaction to touching the udder as indicator for milking behaviour

Recorded primi- and multiparous cows (n = 1141)

Repeatability: 0.31

Heritability: 0.10

- Phenotypic correlation to conventional milkability: 0.32
- -> possibility to increase reliabilities of breeding values
- But: recording manually, time consuming
- In future: data from automated milking systems

Automated recording of activity (heat, lameness, health & welfare)

Accelerometers, Cameras, GPS, sound analysis

- Lying time calves (Finney et al., 73)
 dairy cows (Henriksen & Munksgaard, 54)
- Lameness ear sensors (Link et al., 57)
- Movement on pasture GPS, accelerometer (Maxa et al., 56)
- Activity (Ipema et al, 56)
- Real time image analysis, sound analysis, sensor signals (Berckmanns, 69)
- Social interactions Ultra Wide Band (UWB) technology (Medisetti et al., 73); social rank (Gabrieli, 69)

Automated recording of feeding & drinking -> metabolic disorders, calving

Pressure, rumen temperature, pH

- Eating (Ipema et al, 56)
- Grass intake (Zom et al., 56)
- Rumination calving (Clark and Garcia, 57)
- Modeling feed /DMI intake (Richter et al., 57)
- Rumen temperature feed efficiency (Fischer & Faverdin, 44)
- Rumen pH Water intake (Mottram and Bradley, 57)

Automated recording of physiological parameters

- body core temperature calving
- Body temperature measurement in teats of automatic drinkers - Calf health surveillance
- respiration rate (developmental stage) (Pinto et al., 54)
- behaviour and health review (De Vries, 57)

Further applications & challenges

Conformation -> Cameras (Salau et al., 57)

Problem: Data interpretation!!

EU-PLF- course (Faure et al., 69)

How about harsh environments?

Challenges:

- Cold climates:
 - Battery functioning!
- Humid climates:
 - equipment longevity
- Remote locations:
 - Signal & power availability
 - Animal tracing & identification (beef cattle) (Pires, 69)
- Industrial locations:
 - Signal disturbance (airports, high-voltage power lines)
- Hot climates:
 - Equipment functioning ok, but novel traits: heat stress

Thermography – heat stress

- n = 163 Holstein and German Black Pied cattle
- Longitudinal (2 years) recording of:
- Respiration rate
- Rectal, vaginal, skin temperature in 4 different body parts
- In-barn temperature and humidity (THI – index)

(Al-Kanaan et al., 2015)

Skin temperature by Temperature-Humidity Index for Holstein Friesian Cattle of different parities

Skin temperature by Temperature-Humidity Index for Holstein and German Black Pied Cattle of different parities

Body temperature by THI for cows with different individual heat stress sensitivity

Heat stress indicators

- All parameters (respiration rate, temperatures) responded to increasing THI
- Differences between breeds, parities, milk yield, individual sensitivity
- Skin temperature may be a particular valuable tool for phenotyping heat stress

Body temperature & psychological stress

 Assessed cows' (n= 40) eye temperature, heart rate, cortisol, behaviour in handling (stress) situations

Phenotypic correlations eye temperature – handling tests

	Cortisol	Heart rate	Handling score	time to separation
Eye temperature	0.62	0.68	0.68	0.75
Heart rate	0.50	-	0.45	0.52
			Gebur	t et al., 2015 a, b

Conclusion

- There are a myriad of new technologies available for novel phenotyping strategies
- Usually indicators data interpretation a challenge
- Novel behaviour recording strategies promising but economic value in future?
- Particularly (heat) stress recording is practical and may gain importance

