

Genotype x Environment Interactions in Dual Purpose Cattle in Harsh Environments

Beat Bapst Qualitas AG, Switzerland

30-08-2016 EAAP 2016, Belfast

Methods/Data Results
Background

Dairy cattle is kept in various environments worldwide:

- Geographic/topographic/climate
 - Lowlands
 - Alpine regions with alpine summer pasture
 - Tropical/Subtropical/Temperate climate

•

Production systems

- TMR feeding systems
- Pasture based feeding systems
- Organic/conventional systems

• • • •

Methods/Data

Results

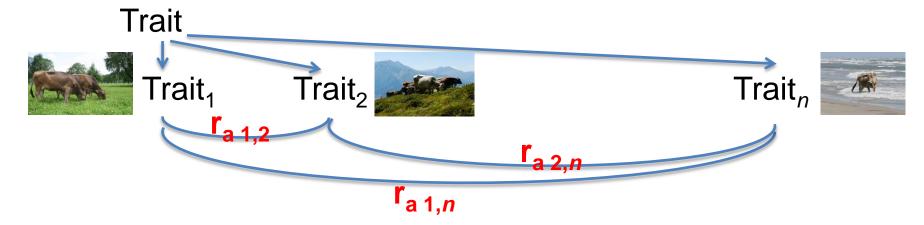
Discussion/Conclusion

Background

Different cows:

Different environments:

Interactions between specific environment and genotype (GxE Interactions)?



Concept

Methods/Data

Multiple trait models

- Split a trait in *n* different other traits according to *n* defined environments
- Estimate the genetic correlations (r_a) between the traits

Concept

Multiple trait models Trait____

Results

r_{a 1,n}

- r_a = 1
- 1 > r_a > 0.8
- r_a < 0.8

- → No GxE interactions
- → Weak GxE interactions
- → Strong GxE interactions

Model

- Multiple trait animal model with repeated measurements
- REMLF90
- Traits: Milk kg, fat kg and protein kg
- Stepwise model development

Results

Discussion/Conclusion

Model

Effect	Туре	Trait				
		Environment 1	Environment 2			
Herd * Year	random	Mkg, Fat, Prot.	Mkg, Fat, Prot.			
Calving Year * Season	fixed	Mkg, Fat, Prot.	Mkg, Fat, Prot.			
Lactation	fixed	Mkg, Fat, Prot.	Mkg, Fat, Prot.			
additiv genet. effect of animal	random	Mkg, Fat, Prot.	Mkg, Fat, Prot.			
Permanent environment	random	Mkg, Fat, Prot.	Mkg, Fat, Prot.			
Residual	random	Mkg, Fat, Prot.	Mkg, Fat, Prot.			

Discussion/Conclusion

Concept 2 Opposed environments/farms: Scenario FA: Farm altitude

Harsh env.

Concept 2 Opposed environments/farms: Scenario FS: Farming system

Results

Discussion/Conclusion

Concept of the current analysis

Different type of cows	2	Different types conv/organic	of environments lowland/mountain
Orig. Braunvieh (OB)	GxE?		
	1		
	Differ	ence?	
Brown Swiss(BS)	GxE?		
the Ros			

Data

OB: 104,984 standard lactations (35,614 cows) **BS**: 2,113,959 standard lactations (753,667 cows)

•	2000 -	2015
---	--------	------

- Traits: Milk kg, fat kg and protein kg
- Restrictions: Test days only on the same farm during lactation, cows from lowland with summer alpine pasture were excluded
- Phenotypic key figures:

Year	ОВ			BS			
	Milk kg	Fat kg	Prot. kg	Milk kg	Fat kg	Prot. kg	
2000	5677	213	184	6342	251	210	
2015	6066	238	201	7197	290	244	

992384922	CH120080286063	331100	1	20100703	20150510	з	1	10333	444	39:	1 305	585	5	
992354684	CH120080285967	331100	1	20100427	20150521	3	1	8161	326	285	385	585	5	
996556862	CH120095356454		1	20110919	20150522	2	1	9885	360	331	385	585	5	
991595779	CH120053767469	331100	1	20070122	20150524	6	1	8249	330	300	305	305	5	
991786894	CH120053760053	331100	1	20071125	20150527	5	2	0161	382	326	305	505	5	
992182176	CH120000205592	331100		20000027	20150013	3	1	0000	403	323	305	505	5	
006514273	CH120005356331	331100	1	20110813	20150816	2	1	6800	381	241	385	585		
992178951	CH120880285523		1	28898916	20150906	4	1	7481	319	277	385	585		
996514265	CH120095356324	331100	1	20110811	20150908	2	1	6775	283	258	305	585	5	
992887726	CH120075639263	331100	1	20090331	20150909		1	7570	329	277	305	585		
996675829	CH120095356652	331100	1	20111123	20150910	2	2	5834	223	229	305	585	5	
991545146	CH120053767292	331100	1	20061114	20150915	7	1	7560	332	298	305	585		
996861978	CH120095356867	331100	1	20120413	28158916	2	1	5344	286	284	385	585	5	
992515816	CH120080286629		1	20101215	20150916	з	1	7778	273	288	305	585		
997220748	CH120103710816			20130113	20150930	1	1	6270	264	252	305	585		
997843837			1	20120918	20151002	1	1	6961	298	273	305	585		
996647542	CH120005356504	331100	1	20111110	20151003	2	1	8023	351	297	305	595		
997843831	CH120103718540		1	28128926	20151005	1	1	5885	265	189	385	585		
	CH120075638990		1	20090106	20151006	5	2	8845			305	585		
	CH120028089916		1	20030317	20151009	16		9227			4 305			
996675823	CH120095356645		1	20111207	20151017	2	1	6391	242		305	585		
	CH120103718564		1	20120927	20151019	1	1	6760	273	265	305	585		
997043035	CH120103718526		1	20120923	20151029	1	2	5983	229	218	305	585		
			1	20120925			1	5667		219	362	585		
	CH120080285295		1	20090419		5	2	8646	335	304	305	585		
	CH120103710472			20120029	20151100		1	6233	270	230	305	505		
992498289	CH120080286469		1	20101120	20151108	з	1	7928	371	384	305	585		
991766259			1	20071114	20151115	6	1	7130	294	273	305	585		
		331100		20090317	20151123		1		412	302	305	585		
996777398	CH120095356812	331100	1	20120214	20151126	2	1	7812	208	270	305	585	5	

Farm altitude

Methods/Data

Discussion/Conclusion

Heritabilities (diagonal elements) and genetic correlations, r_a for OB / BS:

Results

	Milk kg 1	Fat kg 1	Prot. kg 1	Milk kg 2	Fat kg 2	Prot. kg 2
Milk kg 1	<mark>0.33</mark> / 0.27					
Fat kg 1	<mark>0.85</mark> / 0.78	0.23 / 0.20				
Prot. kg 1	<mark>0.87</mark> / 0.82	<mark>0.86</mark> / 0.83	<mark>0.24</mark> / 0.18			
Milk kg 2	<mark>0.99</mark> / 0.99	<mark>0.85</mark> / 0.78	<mark>0.86</mark> / 0.81	0.30 / 0.23		
Fat kg 2	<mark>0.83</mark> / 0.74	<mark>0.99</mark> / 0.99	<mark>0.87</mark> / 0.82	<mark>0.83</mark> / 0.74	0.26 / 0.22	
Prot. kg 2	<mark>0.89</mark> / 0.82	<mark>0.85</mark> / 0.81	<mark>0.99</mark> / 0.99	<mark>0.88</mark> / 0.83	<mark>0.86</mark> / 0.80	0.28 / 0.22

Methods/Data

Discussion/Conclusion

Farming system

conventional / organic

Heritabilities (diagonal elements) and genetic correlations, r_a for OB / BS:

Results

	Milk kg 1	Fat kg 1	Prot. kg 1	Milk kg 2	Fat kg 2	Prot. kg 2
Milk kg 1	<mark>0.29</mark> / 0.26					
Fat kg 1	<mark>0.82</mark> / 0.76	0.24 / 0.20				
Prot. kg 1	<mark>0.82</mark> / 0.85	<mark>0.85</mark> / 0.83	<mark>0.19</mark> / 0.17			
Milk kg 2	<mark>0.99</mark> / 0.99	<mark>0.82</mark> / 0.76	<mark>0.82</mark> / 0.82	0.27 / 0.21		
Fat kg 2	<mark>0.78</mark> / 0.71	<mark>0.99</mark> / 0.99	<mark>0.85</mark> / 0.80	<mark>0.78</mark> / 0.71	0.24 / 0.18	
Prot. kg 2	<mark>0.85</mark> / 0.85	<mark>0.85</mark> / 0.80	<mark>0.99</mark> / 0.99	<mark>0.85</mark> / 0.84	<mark>0.84</mark> / 0.77	<mark>0.26</mark> / 0.22

- GxE interactions do not exist for yield traits between common and harsh environments for OB and for BS dairy cattle
- OB and BS do not react differently to harsh environments
- Confirmation of earlier investigations for Swiss populations: r_a 0.96-0.98 for yield traits in conventional and organic environments (Bapst et al., 2007 in Simianer, 2007)
- Other investigations show similar results, partly with slightly stronger GxE interactions (e.g. Pfeiffer et al., 2016; Cole, 2015; Streit et al., 2012)
- Stronger reactions were found in more contrasting environments: e.g. South Africa (Neser et al., 2014)

Discussion/Conclusion

→ No need for action for the breeding program and for genetic evaluation

But:

• Establish different environment definitions

Test other methods/models/breeds (SI versus HO/RH)

Discussion

Thanks for your attention

Results

Methods/Data

Acknowledgements:

- The authors acknowledge the financial support for this project provided by transnational funding bodies, being partners of the FP7 ERA-net project, CORE Organic Plus, and the cofund from the European Commission
- We would like to acknowledge Braunvieh Schweiz for the permission to use their data for this study
- Thanks to Bio Suisse and FiBL for providing information regarding organic Swiss farms