

PROHEALTH, production diseases and preweaning piglet mortality

S.A. Edwards,

S.M. Matheson, F. Pandolfi, R. Thompson, T. Ploetz, I Kyriazakis

Sustainable Intensive Pig and Poultry Production

Project Objectives

- To develop an understanding of the multi-factorial dimension of animal pathologies linked to the intensification of production
- To develop, evaluate and disseminate effective management and control strategies for these 'production diseases'.

What are 'production diseases'?

Diseases which persist in intensive systems and whose prevalence of severity tends to increase with production level

How is PROHEALTH addressing production diseases?

Why is piglet mortality a 'production disease'?

It is a persistent problem

based on Interpig data

Why is piglet mortality a 'production disease'?

It increases with intensity of production

Baxter & Edwards (2016) based on Interpig data

Levels of piglet mortality: the PROHEALTH survey

50 herds in each of 3 EU countries (2011-2013)

Country	Α	В	С
Total born	14.6	13.3	15.0
Born dead (%)	8.2	14.3	7.3
Liveborn mortality (%)	13.1	14.5	13.1
Total loss (%)	21.3	28.8	20.4

Klinkenberg, Van Limbergen, Dewulf & Maes IPVS 2016

The cost of piglet mortality: PROHEALTH review

- Estimated costs of stillbirth ranged from €4-17 per produced piglet.
- Estimated costs of pre-weaning mortality were also highly variable,
 the average of all studies being ~ €5 per produced piglet

Niemi, Jones, Tranter, Heinola (2015) project deliverable

The complexity of production diseases

The complexity of piglet mortality

The growing complexity with increased prolificacy

Baxter & Edwards (2015)

Figure 1. Predisposing factors of piglet mortality

Understanding the causes

- Farms requesting an audit for neonatal mortality problems
- ~ 20 sows randomly selected in each farms
- All dead piglets were classified in one of the 16 causes based on standardized necropsy and data collected from the farmer

Animal effects and farm effects

- Identify risk factors for the different causes of piglet mortality
- Piglet level : 155 farms7,761 dead piglets from37,356 born

- Identify neonatal mortality pattern
- Farm level: 146 farms7,928 dead piglets from40,101 born

Causes of mortality

• 84.4% of the mortality due to 6 main causes

Different categories of stillbirth

- Death during the farrowing
- Early sepsis
- Death before farrowing (Autolysis)

Prolificacy and intra-uterine competition

Distribution of mummified piglet size

Starvation & crushing

Same mechanism with different mortality endpoints?

- Correlation between prevalence of crushing & starvation
- Crushing and starvation both increase in older parity sows

Identifying farm patterns

3 farm clusters

Next phase for farm studies

- Different causes have different risk factors
- Different farm profiles for neonatal mortality patterns
 - Now investigating associated farm practices in more detail using retrospective questionnaire
 - Housing?
 - Genetics?
 - Management?

Understanding farm differences: gestation housing

Quesnel, Pastorelli, Merlot, Louveau, Lefaucheur, Robert, Pere & Gondret EAAP 2016 THIS SESSION

Understanding farm differences: lactation housing

Matheson, Walling & Edwards EAAP 2016 THIS SESSION

Understanding farm differences: management

Moustsen, Johansson, Forkman, Nielsen & Andreasen ISAE 2016

Can sow behaviour be modified to reduce crushing risk?

- Investigating impact of positive handling of loose housed sows in the 5 days prior to farrowing on subsequent sows responsiveness
 - Daily gentle scratching to accustom to humans
 - Classical music to reduce external startles

- Treatments replicated in 2 herds
- Free farrowing pens
- 446 hyperprolific sows (TB= 18.4)

Effects on sow response to humans (0-2 scale)

Will the treatments affect crushing risk?

How do sow characteristics affect piglet mortality risk

- The pattern of movements and how risky they are for piglets
 - Lying control
- The calmness of sows post farrowing
 - Less restlessness post-farrowing

Is there genetic variation?

How do sow characteristics affect piglet mortality risk?

Automating data capture for large scale assessments

Thompson, Matheson, Plötz, Edwards & Kyriazakis EAAP 2016 THIS SESSION

Sow conformation and lying characteristics

Matheson, Thompson, Walling, Kyriazakis & Edwards ISAE 2016

- Sow leg conformation influences accelerometer-derived measures
- Type of farrowing floor interacts with sow leg conformation

Will this affect crushing risk?

How do piglet characteristics affect mortality risk?

- Characterising piglet maturity at birth
 - Morphology
 - Energy reserves
 - Thermoregulatory ability

How are these influenced by gestation conditions?

Quesnel, Pastorelli, Merlot, Louveau, Lefaucheur, Robert, Pere & Gondret EAAP 2016 THIS SESSION

How do piglet characteristics affect mortality risk

Piglets show great variation in IUGR indicators across birthweights

How do piglet characteristics affect mortality risk?

- Piglet maturity indicators
- Do these show genetic variation?

How do they affect crushing risk?

Matheson, Walling & Edwards EAAP 2016 THIS SESSION

Figure 2. Illustrations of a normal (left) and a growth-restricted piglet (right). Criteria for growth restriction were 1) steep, dolphin-like forehead, 2) bulging eyes, and 3) wrinkles perpendicular to the mouth. IUGR = intrauterine growth restriction. See online version for figure in color.

Conclusions

- Piglet mortality is a complex and intractable "production disease"
- Farm environment, sow and piglet characteristics all contribute

Genetic selection for prolificacy
Adoption of free farrowing systems

increase the challenge

- PROHEALTH is investigating risk factors at all levels
 - to increase scientific understanding
 - to develop practical solutions

Sandra Edwards

Newcastle University

Sandra.Edwards@newcastle.ac.uk

www.fp7-prohealth.eu

We wish to acknowledge and thank all members of the Prohealth consortium contributing to research on piglet survival