




# Effects of gestation housing systems on maternal stress, piglet maturity at birth and early survival

H. Quesnel, H. Pastorelli, E. Merlot, I. Louveau, L. Lefaucheur, F. Robert, M.C. Père, F. Gondret







#### Maternal stress and piglet neonatal survival

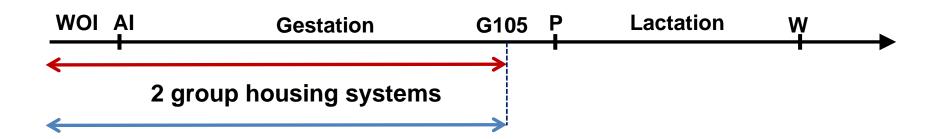
In intensive pig husbandry, sow housing and management system can generate maternal stress (Merlot et al, 2013).

Maternal stress during gestation:

- . has deleterious effects on maternal physiology or health (Merlot et al, 2013)
- . might increase piglet neonatal mortality (Tuchscherer et al, 2002)

Underlying hypothesis: high concentrations of maternal cortisol during gestation may influence foetal development and maturation through modifications in nutrient partitioning and endocrine regulations in the foetuses

thereby altering piglet neonatal survival



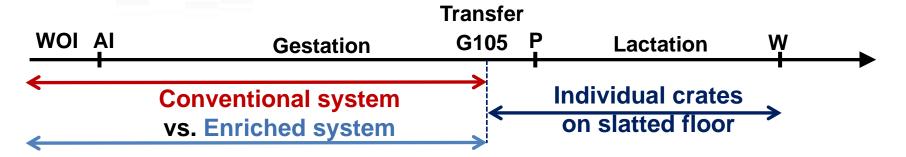

#### **Objective**

To compare 2 contrasted housing systems for gestating sows, one system being more stressful than the other one, by investigating

- \* litter performance
- \* piglet maturity at birth and survival

#### **Experimental design**



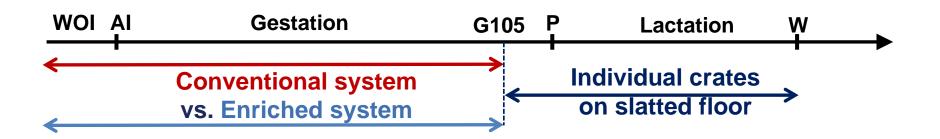

#### on slatted floor, 2.4 m<sup>2</sup>/sow



enriched system
on straw bedding (deep litter),
3.5 m²/sow

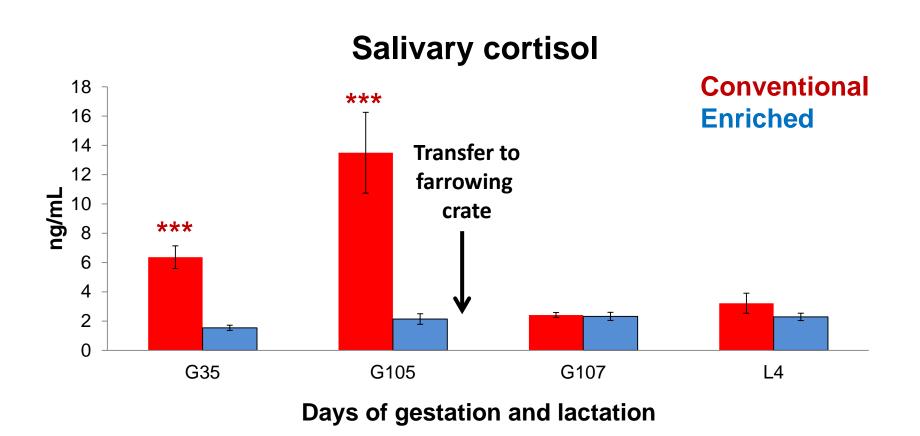


#### **Experimental design**








# Experimental design



- 106 crossbred Landrace x Large White sows and their litter
- Piglet mortality : all litters
- Maternal salivary cortisol : all sows
- Mechanistic study from birth to weaning: n = 37 sows and their litter
- Traits related to piglet physiology and maturity <u>at birth</u>
- Neonatal survival and early growth performance
- Nutritional composition of colostrum

## Greater concentrations of maternal cortisol in the conventional system



## Greater rate of piglet mortality in the conventional system

|                                          | System       |                 | Effect |
|------------------------------------------|--------------|-----------------|--------|
|                                          | Conventional | <b>Enriched</b> |        |
| No. of litters                           | 49           | <b>57</b>       |        |
| Mortality rates, %                       |              |                 |        |
| - At birth                               | 8.6          | 6.5             | 0.07   |
| - Early (12 h-72 h pp)                   | 13.6         | 6.3             | <0.001 |
| <ul><li>Late (72 h pp-weaning)</li></ul> | 4.4          | 4.3             | ns     |
| - Overall                                | 25.8         | 16.7            | <0.001 |

#### Piglet characteristics at birth

#### 18 C litters, 19 E litters

| All piglets      |                                             | System |           | Effect |
|------------------|---------------------------------------------|--------|-----------|--------|
|                  |                                             | C      | E         |        |
|                  | At birth                                    |        |           |        |
|                  | - Body weight, kg                           | 1.44   | 1.53      | ns     |
|                  | - Length, cm                                | 25     | <b>26</b> | 80.0   |
|                  | 1 h after birth<br>- Rectal temperature, °C | 36.8   | 37.3      | 0.06   |
| 6 piglets/litter |                                             | System |           | Effect |
|                  | Plasma concentrations                       | C      | E         |        |
|                  | NEFA, μmol/L                                | 19.7   | 19.9      | ns     |
|                  | Lactate, mmol/L                             | 5.2    | 5.7       | ns     |
|                  | Albumine, g/L                               | 8.7    | 8.5       | ns     |
|                  | Fructose, mmol/L                            | 2.6    | 3.2       | ns     |
|                  | Glucose, mmol/L                             | 2.9    | 3.2       | 0.10   |

#### Piglet maturity at birth

#### 18 C litters, 19 E litters

| 1 male piglet/litter | male piglet/litter |      | System |      |
|----------------------|--------------------|------|--------|------|
|                      |                    | C    | E      |      |
|                      | Body weight, kg    | 1.50 | 1.54   | ns   |
| Organ weight         | Heart, g           | 11.6 | 11.6   | ns   |
|                      | Liver, g           | 45.5 | 47.7   | ns   |
|                      | Kidneys, g         | 10.5 | 10.4   | ns   |
|                      | Gut, g             | 83.4 | 97.0   | 0.06 |
|                      | in % BW            | 5.5  | 6.2    | 0.02 |
|                      |                    | С    | E      |      |
| Energy reserves      | Muscle glycogen, % | 9.9  | 10.8   | 0.02 |
|                      | Liver glycogen, %  | 12.9 | 13.2   | ns   |

<sup>→</sup> Piglets from the conventional system were slightly less developed and had lower energy reserves.

Other indicators of physiological maturity, including muscle and liver gene expression profiles, did not differ between C and E piglets.

### No significant difference in piglet growth rate during the first 24 h

| 18 C litters, 19 E litters   | System |     | Effect |
|------------------------------|--------|-----|--------|
|                              | C      | E   |        |
| BW gain from birth to T24, g | 82     | 114 | ns     |

#### **Nutritional composition of colostrum**

|                    | System |            | <b>Effect</b> |
|--------------------|--------|------------|---------------|
|                    | C      | E          |               |
| Dry matter, %      | 25.2   | 23.6       | ns            |
| Proteins, %        | 18.1   | 16.5       | 0.07          |
| Lipids, %          | 5.0    | 4.4        | ns            |
| Lactose, %         | 2.5    | 2.6        | ns            |
| Gross Energy, kJ/g | 6.1    | <b>5.6</b> | ns            |



#### **Conclusions**

- ✓ The conventional system was:
- stressful for the sows during gestation,
- associated with increased neonatal mortality,
- not associated with a marked reduction in piglet maturity at birth.
- ✓ It seems unlikely that only one trait altered by the system can be responsible for the large difference in neonatal survival; it is possible that the associations of differences in several traits have contributed to the difference in mortality.

# Many thanks to the staff from ✓ INRA ✓ CCPA group ✓ Chambre d'Agriculture de Bretagne



#### Thank you for your attention!







