

This little piggy went to market: applications of genomics for sustainable pig health

Max F. Rothschild Department of Animal Science Iowa State University

Why is <u>animal health</u> so important?

Disease causes loss of up to 15% of potential profit

>Mortality

Product condemnation

Treatment costs (prevention and treatment)

Reduced production efficiency

≻Lower genetic gain

≻Reduced consumer acceptance

Comprehensive disease control program

*Biosecurity

Sanitation

Eradication

Vaccination

Antibiotics

***Genetic resistance**

Why take a <u>genetics</u> approach to improve animal health?

- > Improves animal welfare
- Environmentally sound approach
- Sustainable improvements
- Addresses consumer concerns about antibiotics
- > Animal health affects human health

✓Zoonotic diseases

✓Food poisoning

Evidence for Host Resistance: Porcine Respiratory and Reproductive Syndrome (PRRSV)

PRRS is a 700 million dollar issue

Variation in severity among infected pigs (exp. challenges)

Antibody response and lung lesions:Meishan < Duroc (Halbur et al., 1998)

Evidence of genetic resistance relative to reproductive failure (Lewis et al., 2009)

> > matings per conception (PRRSV neg.) $h^2 = 0.04$

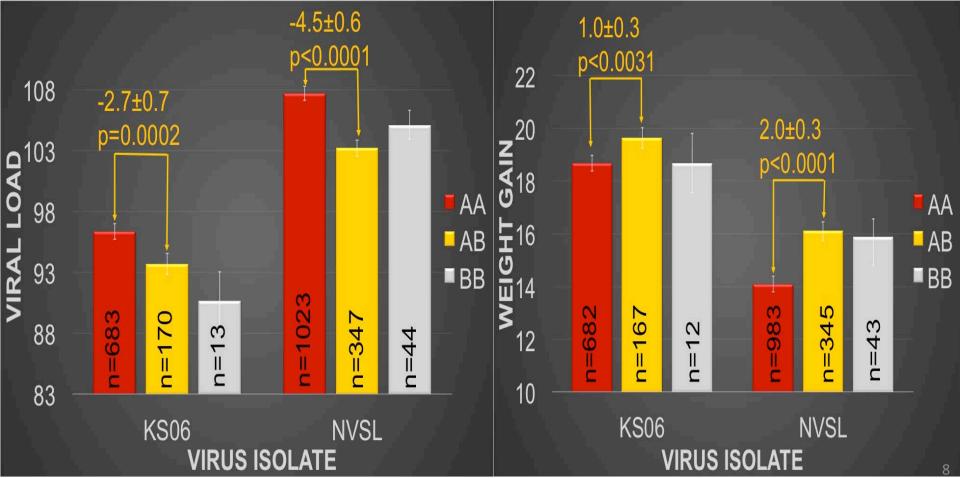
> > matings per conception (PRRSV pos.) $h^2 = 0.46$

The PRRS Host Genetics Consortium (PHGC)

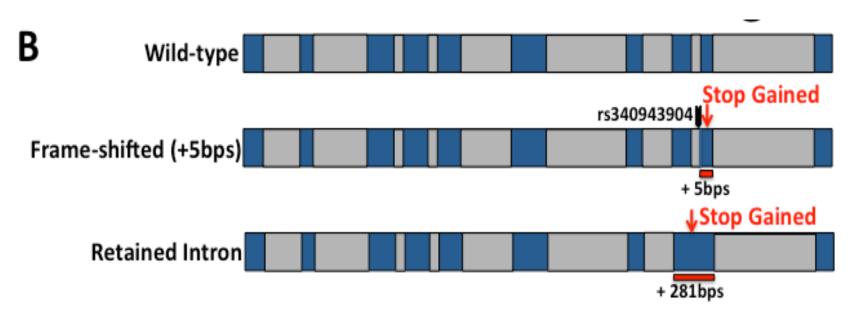
Joan Lunney. USDA BARC Bob Rowland, KSU

- Understanding the role of host genetics in resistance to PRRSV infection, and the effects of PRRS on pig health and related growth.
- Uses a nursery pig model to assess pig resistance/ susceptibility to primary PRRSV infection.
- After acclimation, pigs infected with PRRSV and followed for 42 days post infection (dpi).
- Blood samples collected at 0, 4, 7, 10, 14, 21, 28, 35 and 42 dpi, and weekly weights recorded.

Results of Genomic Analyses JAS 90: 1733

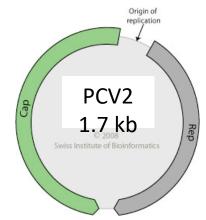

Viral Load Weight Gain o Chr 4 Chr 4 0 0.08 11% of 1 Mb region 0.06 0 genetic explains 15% variance of genetic Proportion of Variance Proportion of Variance 0.06 variance 0 0.04 Includes important 0.04 candidate 0 genes 0 0 0.02 0.02 0 00 0 0 00.00 00.00 10000 30000 50000 0 30000 0 10000 50000 5-SNP window ordered by chromosome 5-SNP window ordered by chromosome

Effects of SSC4 SNP WUR10000125 in PHGC (NVSL) and Genome Canada (KS06) trials


VIRAL LOAD

WEIGHT GAIN

A SNP introduces a new acceptor splice site, which causes five nucleotides to be added to the transcript (GBP5)



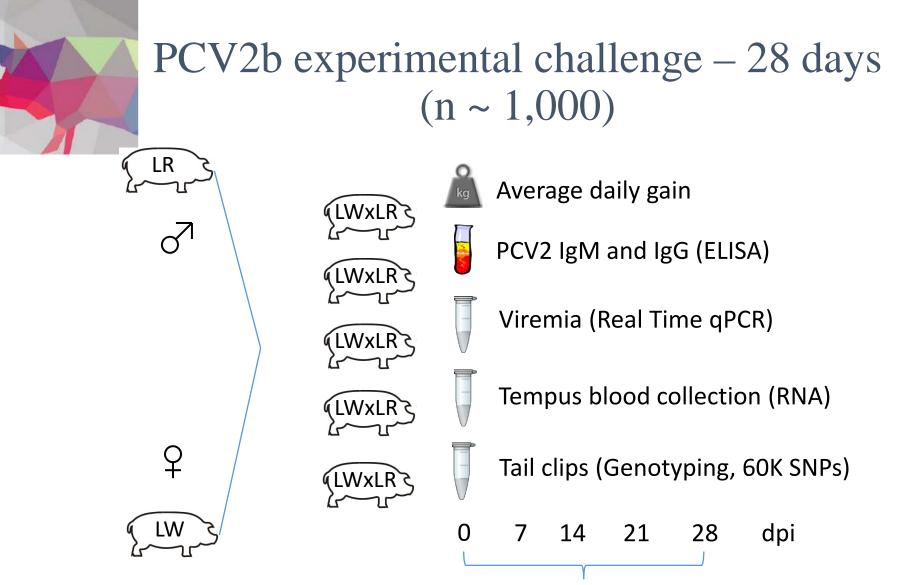
The 5bp transcript causes a frame-shift in the protein that introduced an early stop codon.

The susceptible genotype is missing the C-terminus of the protein Koltes et al. *BMC Genomics* 16:412.

Porcine Circovirus 2

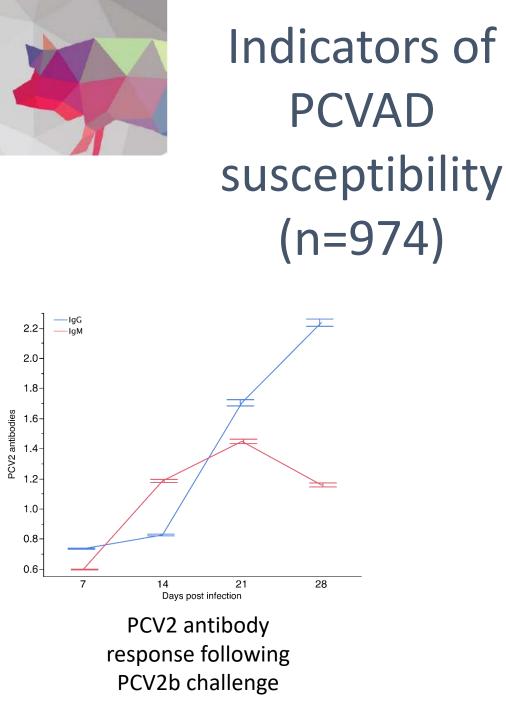
- Circular single stranded DNA virus
- Infect monocytes, macrophages and dendritic cells
- Two main clusters of strains exist: PCV2a and PCV2b
- PCV2 is environmental stable and resistant to common disinfectants
- Pigs become seropositive between 6 -18 weeks of age
- ✤ Vaccines available (2008)

Previous evidence suggested that host genetics influences PCVAD

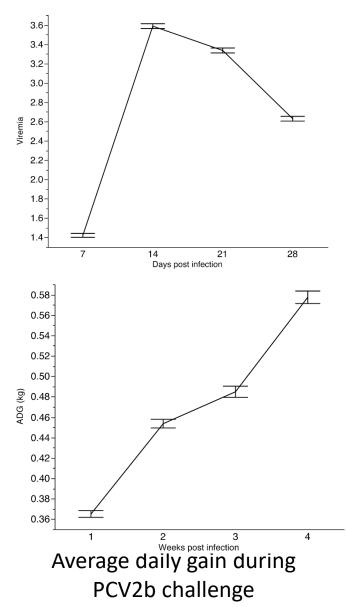

- <u>Zhou et al., 2006</u>- Sero-prevalence in 46 farms in Zhejian (China) was higher in Landrace than in Yorkshire and Duroc sows
- Opriessnig et al., 2006 Landrace developed more severe lymphoid lesions than Duroc and Large White in experimental challenges
- Opriessnig et al., 2009 Landrace had significantly more severe PCV2-associated lesions than Pietrain in experimental challenges
- <u>Bates et al., 2009</u> Variation in PCV2 immune response has an important host genetic contribution

Genome Canada project: Application of genomics to improving swine health and welfare

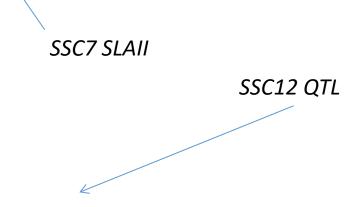
N ~ 1,000 Genetic lines (n = 14) Genetic programs (n = 7)


LW: Large White LR: Landrace

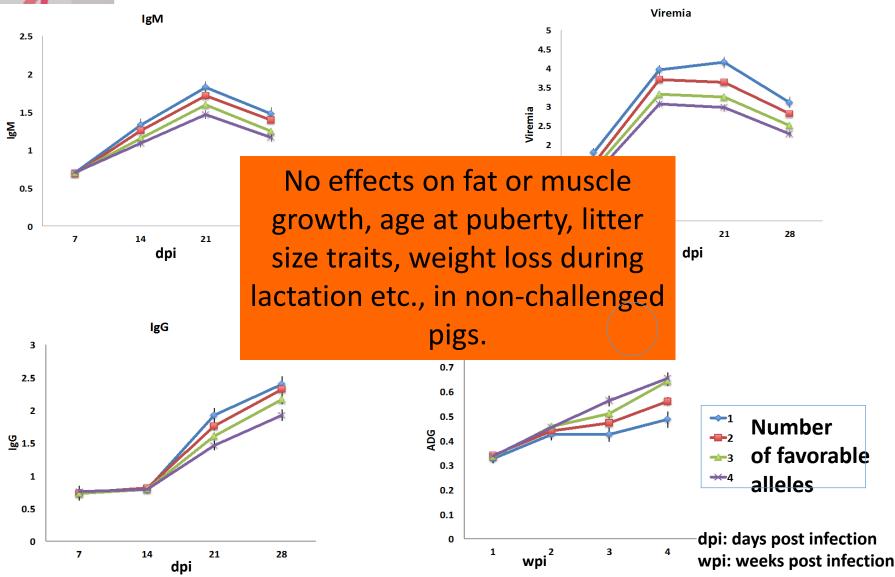
Ciobanu et al.



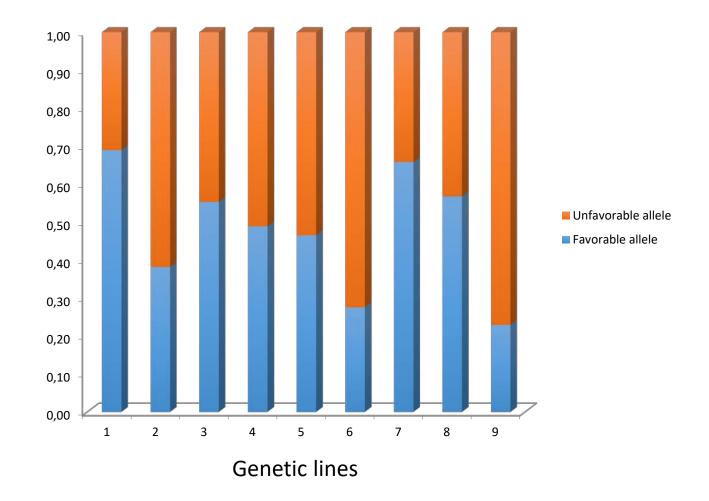
PCV2b challenge


PCV2b viremia following experimental challenge

SSC7 and SSC12 explained ~ 15% of genetic variance


modelFreq

* Kachman, 2014



Alleles from 2 major SNPs influence viremia, immune response and growth during PCV2b infection

Frequency of favorable allele for the SNP located on SSC12 provides opportunities for Marker Assisted Selection

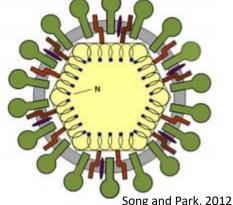
Genomic Differences Between Pre-weaning Survival and Mortality of Piglets Following PEDV Outbreaks

Francesca Bertolini, PhD,

Department of Animal Science, Iowa State University

Benny Mote

IOWA STATE UNIVERSITY


Max Rothschild

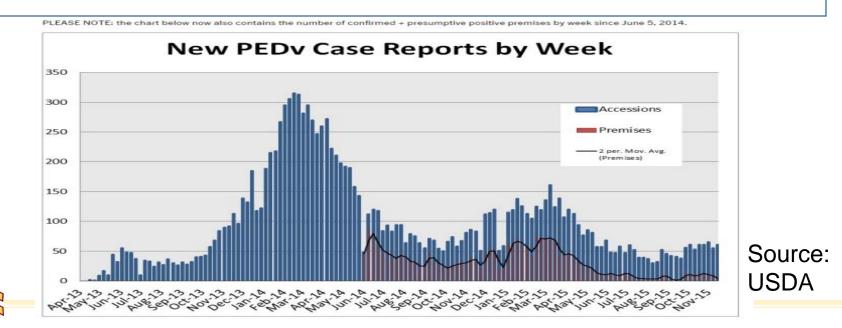
Coronavirus

Infects the cells lining the small intestine

- Watery Diarrhea
- Vomit
- Dehydration

The incubation period is approximately 2 days and diarrhea lasts for 7 to 14 days

Rapid spread across all breeding and growing pigs with almost 100% morbidity (pigs affected) within 5 to 10 days

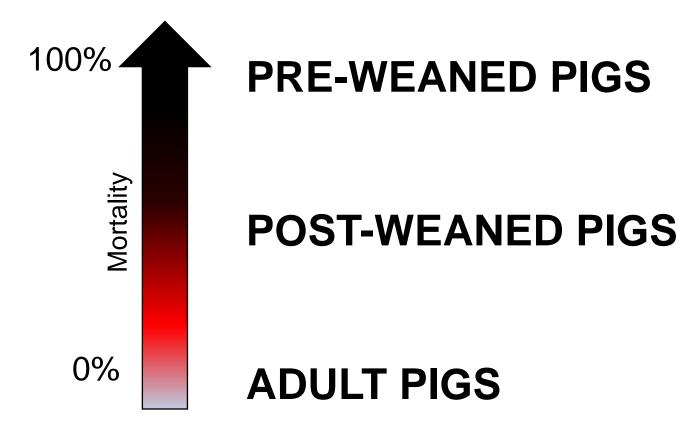


PEDV DIFFUSION

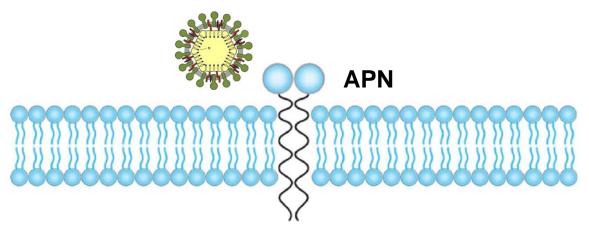
First reported in Europe in the 1970s (England and Belgium) and later in Asia, 1980s

First diagnosed in the United States in mid-May 2013

Reported in Canada in January 2014



MORTALITY/RESILIENCE


AGE-DEPENDENDENT PEDV RESILIENCE

(Shibata et al. 2000)

Alanyl (membrane) aminopeptidase

Antibodies against pAPN block the infection (Sik

et al. 2003; Li et al. 2007)

Immunofluorescence assays (Li et al. 2007)

Other coronaviruses such as TGEV, HCoV-229E and FeCoV all use APN as their cellular receptor (Delmas et abbbbbl., 1992; Yeager et al., 1992; Tresnan et al., 1996; Tresnan and Holmes, 1998; Kolb et al., 1998)

INVESTIGATE THE GENETIC DIFFERENCES BETWEEN SURVING AND DEAD PRE-WEANING PIGLETS THAT CAN BE LINKED TO PEDV RESILIENCE

©Warren Photographi

MATERIALS AND METHODS

Animals

Dead and surviving neonatal pigs during the acute phase of a PED outbreak before the development of maternal antibody

	DEAD	ALIVE	ТОТ
USA1	12	13	25
USA2	71	20	91
CANADA	25	25	50
GERMANY1	25	25	50
GERMANY2	23	23	46
TOTAL	156	106	262

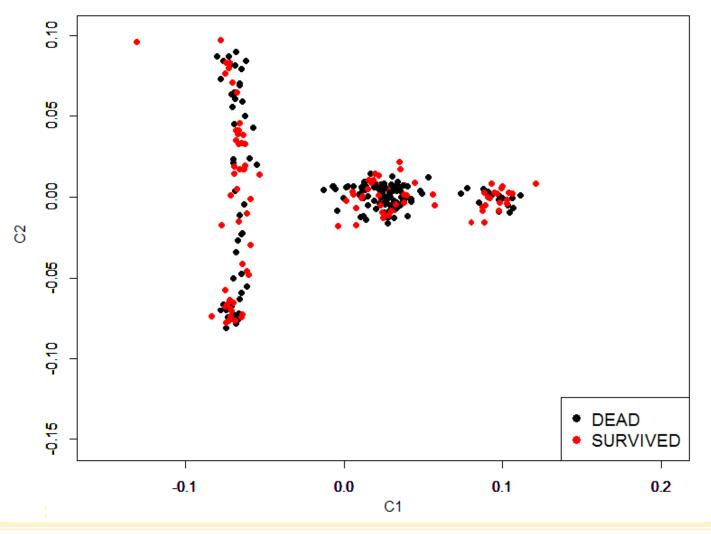
DATA ANALYSES

Genotyping with the 80K SNPchip

Retaining SNPs in autosomes and call rate >0.90

1Mb windows

Mean Fst of each window


Normalization of the mean Fst value

GOrilla and Enrichr



RESULTS

Samples distribution

Normalized Fst Plot

162 ANNOTATED GENES

Results

GENE ENRICHMENT

N. GENES COMPONENT Golgi apparatus cell projection part Golgi membrane

Results

GENE ENRICHMENT

GORILLA

FUNCTION	N. GENES
transporter activity	11
ATPase activity	5
substrate-specific transporter activity	3
ATPase activity, coupled to movement of substances	3
ATPase activity, coupled	3

Results

GENE ENRICHMENT

Enrichr

Virus Perturbations from GEO up

Click the bars to sort. Now sorted by combined score.

SARS-dORF6_36Hour_GSE47962

A-Vietnam-1203-2004(H5N1)_18Hour_GSE28166

icSARA deltaORF6_3Hour_GSE33267

SARS-CoV_24Hour_GSE47962

cSARA deltaORF6_24Hour_GSE33267

A-CA-04-2009(H1N1)_0Hour_GSE47960

SARS-CoV MA15_Day<mark>4-PFU-10^4_GSE33266</mark>

SARS-BatSRBD_84Hour_GSE47962

hMPV_6Hour_<mark>G</mark>SE8961

A-CA-04-2009(H1N1)MA_Day1_GSE36328

Virus Perturbations from GEO down

Click the bars to sort. Now sorted by combined score.

HHV-8_72Hour_GSE6489

icSARA deltaORF6_12Hour_GSE33267

A-Vietnam-1203_CIP048_RG4-2004(H5N1)NS1trunc_24Hour_GSE43204

SARS-CoV_24Hour_GSE17400

A-Netherlands-602-2009(H1N1)_36Hour_GS<mark>E40</mark>844

A-CA-04-2009(H1N1)MA_Day3_G<mark>SE36328</mark>

icSARS CoV_36Hour_GSE<mark>33267</mark>

SARS-BatS<mark>RBD_12Hour_GSE47960</mark>

cSARS Co<mark>V_60Hour_GSE33267</mark>

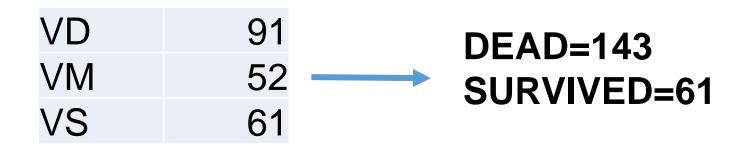
cSARA d<mark>e</mark>ltaORF6_36Hour_GSE33267

GENES under or over expressed in several virus infections, including Coronaviruses.

CONCLUSIONS

Found evidence of several genes that can be linked to pig resilience

-Genes linked to Golgi apparatus -Genes involved in the regulation of ER -Genes involved in ion transports


Further studies to confirm and investigate the role of each gene in pre-weaning pig resilience

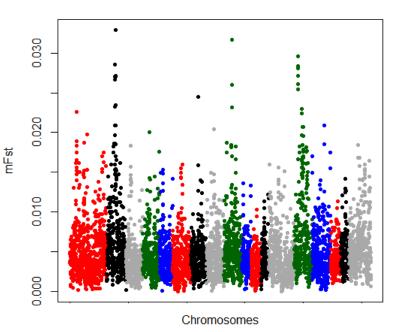
PEDV Study 2 viral inoculum - ~50% survival rate Case and Controls

3 farms

- VD= found dead with diarrhea
- VM= terminated pig for welfare reasons before it died naturally
- VS= survived for 7 days
- We considered both VM and VD as DEAD

mFst analysis with 500kb overlapping windows

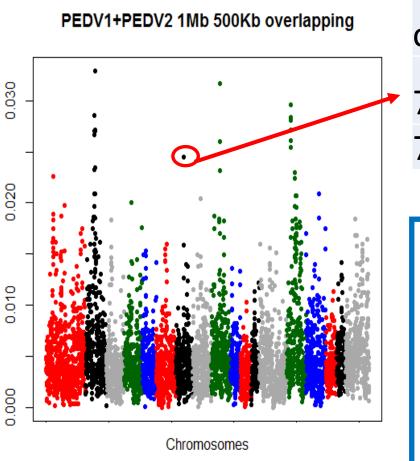
1Mb 500k overlapping


:				N.	
1	. ch	rstart		SNPs	mFst
	6	88000000	8900000	25	0.093
	6	88500000	89500000	19	0.089
Sec. Sec.	9	68000000	6900000	8	0.077
	6	89000000	9000000	19	0.077
	6	87500000	88500000	23	0.077
Chromosomes		_			

9: 6800000-6900000: common in the first analysis

mFst analysis with 500kb overlapping windows combining the 2 PEDV data sets

PEDV1+PEDV2 1Mb 500Kb overlapping



chr	ctart	and		mEct
CHI	start	end	N. SNPs	IIIFSL
2	6700000	6800000	8	0.027039
2	68500000	6950000	6	0.028513
2	6900000	7000000	7	0.026674
2	7650000	77500000	7	0.027158
2	7700000	7800000	8	0.032892
2	77500000	78500000	10	0.027044
ç	6800000	6900000	8	0.031661
ç	68500000	69500000	11	0.026032
14	31500000	32500000	17	0.028339
14	3200000	33000000	18	0.026054
14	3300000	3400000	14	0.027162
14	33500000	34500000	21	0.02955
14	3400000	3500000	22	0.0281

Regions partially overlapp <u>14</u> 34000 Regions totally overlapping in both New regions

DETAILS FOR CHROMSOME 7 AND ANPEP GENE

hr	start	end	mFst
7	61500000	62500000	0.016
7	61000000	6200000	0.025

ANPEP gene	Window
-------------------	--------

chr	start	end	N.	mFst
7	6000000	6100000	18	0.005

A new approach:

Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus

Kristin M Whitworth, Raymond R R Rowland, Catherine L Ewen, Benjamin R Trible, Maureen A Kerrigan, Ada G Cino-Ozuna, Melissa S Samuel, Jonathan E Lightner, David G McLaren, Alan J Mileham, Kevin D Wells & Randall S Prather

Nature Biotechnology 34, 20–22 (2016) doi:10.1038/nbt.3434 Published online 07 December 2015

http://www.nature.com/nbt/journ al/v34/n1/full/nbt.3434.html News > Science

news

'Pig 26': Can this little piggy win over the enemies of GM?

Apr 23, 2013

886

i

UK: African Swine Fever-resistant pig created

BREEDING

A disease-resistant piglet has been produced using new genetic engineering. It is the first animal created from 'gene-editing'.

According to researche copy's a natural genetic DNA had been artificial

The piglet was born four months ago at Edinburgh's Roslin Institute, and is known as 'Pig 26'. 'Gene-editing' involves researchers sninning the

Live pigs produced from genome edited zygotes

Simon Lillico, Christopher Proudfoot, D. F. Carlson, Dana Stverakova, Claire Neil, Carol Blain, Tim King, WA Ritchie, Spring Tan, A Mileham, D Mclaren, Scott C Fahrenkrug, Bruce Whitelaw – 2013 – Scientific Reports Vol: 3 Pages: 1-4

Species-specific variation in RELA underlies differences in NF-kB activity: a potential role in African swine fever pathogenesis

Christopher J Palgrave, Linzi Gilmour, C Stewart Lowden, Simon G Lillico, Martha A Mellencamp, C Bruce A Whitelaw – Jun 2011 - Journal of Virology Vol: 85 Pages: 6008-14

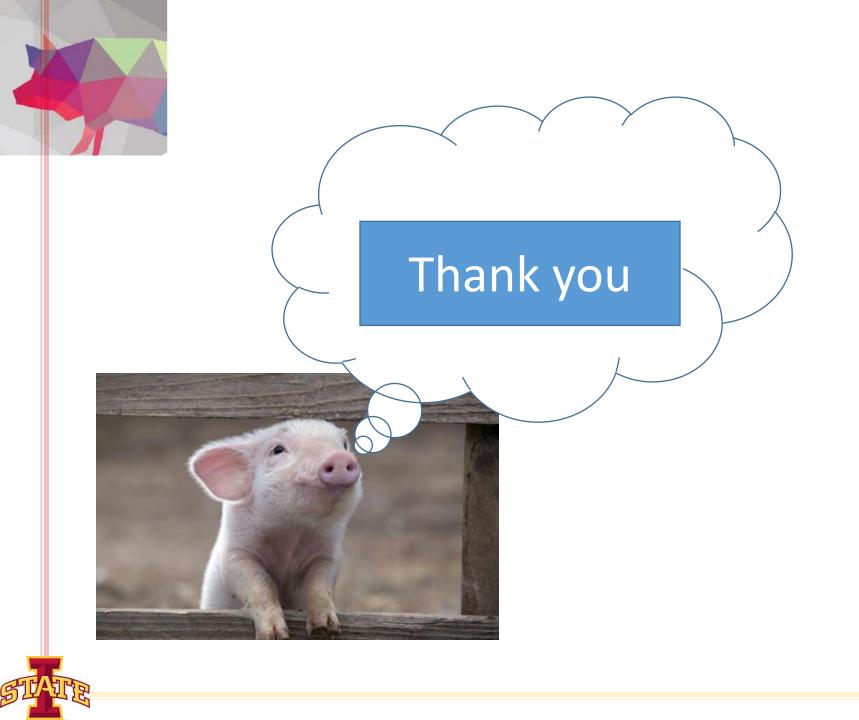
Efficient TALEN-mediated gene knockout in livestock

Daniel F Carlson, Spring Tan, Simon G Lillico, Dana Stverakova, Christopher Proudfoot, Michelle Christian, Daniel F Voytas, Charles R Long, C Bruce A Whitelaw, Scott C Fahrenkrug – 2012 – Proceedings of the National Academy of Sciences of the United States of America - PNAS Vol: 109 Pages: 17382-7

'Pig 26': Can this little piggy win over the enemies of GM?

Improving Sustainability

Genomic identification and selection could be designed and applied to improve resistance in nucleus herds


- Reduce the production cost
- ➢Increase robustness
- ≻Improve welfare

Consider identifying gene targets for gene editing or designer breeding

Acknowledgments

- PIG GENOME COORDINATION PROGRAM (Chris Tuggle, Cathy Ernst)
- Genome Alberta
- PRRS consortium members (Joan Lunney, Bob Rowland, Jack Dekkers and colleagues)
- Andrea Ladinig, Univ. of Veterinary Medicine, Vienna
- Daniel Ciobanu and colleagues, University of Nebraska
- Graham Plastow, University of Alberta
- John Harding, University of Saskatchewan
- Benny Mote, Fast Genetics, University of Nebraska

