

Key factors influencing the carbon footprints of Northern Ireland dairy farms

Aurélie Aubry, Steven Morrison, Tianhai Yan, Paul Caskie, Paul Keatley, Conrad Ferris

Introduction

- Need to accurately estimate GHG emissions for the development and evaluation of mitigation strategies
- AFBI developed the BovIS GHG calculator
 - Using a life cycle assessment
 - Based on recent research findings, using Tier II and III emission factors (country specific)

See EAAP Poster 239 in Session 19

- User friendly
- Available to producers through DAERA online service
- Meets international standards (PAS 2050)

Objectives of the present study

- 1. Obtain a source of data representative of the dairy industry in Northern Ireland
- Estimate the carbon footprints of commercial dairy farms
- Identify farm characteristics that account for variability

Input data

(Land/Crops Livestock	Grazing/Forage	Fertiliser/Manure	Fuel/Electric	Land Use	
Land Controlled Details	(only include land att	ributable to the dairy e	nterprise)		
Land Owned (ha):	62.5				
Land Leased In (ha):	02.3				
Land Let Out (ha):					

Forage Offered During Grazing Period - Produced on Farm

			Total Quantity Offered (kg DM)					
Crop Name	Area (ha)	Yield (tonnes DM/ha)	Cows	Bulls	Heifers >2y	Heifers 1-2y	Heifers 6- 12m	
Area of Grassland	61	8.0	0	0	0	0	0	Edit Delete
-								Add Crop

Summary output

emissions By Source (Excluding Sequestration)

Carbon Emissions per kg of Milk Produced: 1038 g CO₂e per kg of milk

Carbon Emissions per kg of Meat Produced: 16.14 kg CO2e per kg of meat (14.00% of total CO2e emissions)

Summary

Livestock

Dairy Cows: 122.0

Heifers: 123.0

Breeding Bulls: 0.0

Milk Sold (corrected): 1082676 kg

Yield per Cow: 8874 kg

Replacement Rate (excludes mortality): 30%

Average Concentrate Feed Rate: 0.26 kg conc/kg milk

Average Concentrate Feed Rate (inc heifers/breeding bulls):

0.30 kg conc/kg milk

Other

Milk from Forage: 3621 kg

Fertiliser Use: 45.3 tonnes

12.2 tonnes N

152.1 kg N/ha

Efficiency of Grass Utilisation: 8.921 tDM/ha

Liveweight exported: 26425 kg

Summary output

Farm survey data

- Data from 100 Specialist dairy farms for period 2011/2012 obtained from DARD Farm Business Survey (FBS)/ Farm Accountancy data network (FADN)
- Farms selected at random and cover a range of dairy systems with a good geographical spread across Northern Ireland
- Calculations based on actual data combined with a number of assumptions, including:
 - Allocation between dairy and other enterprises (using cow equivalents)
 - Number of months grazing
 - Forage yields and nutritive values
 - Manure handling systems

Characteristics of the 100 commercial dairy farms

		Average	Minimum -	Maximum
No. of dairy cows		94	15 -	362
No. of heifers		59	3 -	278
Milk sold	I/cow/yr	6,349	4,539 -	9,618
Land area	ha	68	19 -	222
Stocking rate	ce/ha/yr	2.0	0.8 -	3.2
Concentrate use	kg/cow/yr	1,982	676 -	3,528
Concentrate use	kg/kg milk	0.30	0.12 -	0.45
Fertiliser use	kg N/ha/yr	134	0 -	261

Source of GHG emissions (%) for the 100 dairy farms

GHG emissions from 100 dairy farms

	Average	Minimum Maximum
Excluding sequestration		
Emissions/cow (t)	7.9	4.3 - 10.6
Emissions/ha (t)	10.8	3.5 - 21.1
Emissions/kg of milk produced (kg/kg)	1.22	0.89 - 1.69
Including sequestration		
Emissions/kg milk produced (kg/kg):	1.02	0.67 - 1.41

GHG emissions from 100 dairy farms

	Average	Minimum	Maximum
Excluding sequestration			
Emissions/cow (t)	7.9	4.3 -	10.6
Emissions/ha (t)	10.8	3.5 -	21.1
Emissions/kg of milk produced (kg/kg) Including sequestration	1.22	0.89 -	1.69
Emissions/kg milk produced (kg/kg):	1.02	0.67 -	1.41

Relationship between milk produced and carbon footprint

Relationship between concentrate feed rate and carbon footprint

Relationship between the proportion of heifers on a farm and its carbon footprint

Combination of factors

Stepwise linear regressions indicated that CF is best explained using:

Carbon footprint =
$$1.28 - 0.0815 M + 0.32 PH + 0.66 C + 0.486 N$$

(R²= 0.64)

Where M is ECM sold (kg ECM/cow/yr) \times 10⁻³ PH is the proportion of heifers C is concentrate used per kg of ECM (fresh kg/kg ECM) N is the inorganic fertiliser N applied (kg N/ha/yr) \times 10⁻³

- Overall, it indicates that CF decreases with
 - Increased milk production per cow
 - Reduced concentrate feed levels
 - Reduced fertiliser use
 - Reduced replacement rates

Other uses of the calculator

- Explore relationships between carbon footprints and financial indicators
- Determine the carbon footprints of a number of farms each year to assess trend (this was done for the period 1990-2013)
- Use the calculator to explore the effects of mitigation strategies using experimental data

Conclusions

- Improving production efficiency reduces dairy carbon footprints (as long as there are no negative effects on health and fertility)
- CF also found to decrease with reduced replacement rate (often overlooked in empirical studies)
- Successful application of a user friendly calculator that can be used by farmers, advisors, scientists, policy makers, on a range of systems
- Farm Business Survey: good source of data to calculate average emission levels, with a process that can be repeated every year

Acknowledgments

This work was funded by DAERA and AgriSearch

