

Weather influences milk yield, feed intake & feed efficiency in dairy cows

Davina Hill & Eileen Wall

Tuesday 30th August 2016 67th Annual Meeting of the European Federation of Animal Science

Leading the way in Agriculture and Rural Research, Education and Consulting

Producing enough food in a changing climate

Improving feed efficiency (FE)

 amount of meat or milk produced per unit of dry matter

 increase output while minimizing feed costs & environmental impacts

Feed efficiency (FE)

- Individual dairy cows differ in
 - feed intake
 - amount of manure, methane & carbon dioxide per unit DMI
 - abilities to generate & conserve heat energy

	More efficient cows	Less efficient cows
Metabolic heat production (as % of gross energy intake)	lower	higher
Skin surface temperature	lower	higher

- More efficient dairy cows might be less susceptible to thermal stress
 - stresses associated with high or low temperatures

Milk production influences heat production

- Heat stress occurs when environmental conditions exceed the body's thermoneutral zone
 - range of ambient conditions at which metabolic heat production & heat loss are balanced
- High yielding cows
 - need high metabolic rates
 - high metabolic heat loads
 - experience heat stress at lower temperatures than lower yielding cows

Research question

- How do
 - milk yield,
 - dry matter intake (DMI),
 - feed efficiency (FE; amount of milk per unit dry matter)

vary with weather in dairy cows of high & average genetic merit?

- Temperature Humidity Index (THI)
 - indicator of environmental conditions causing heat stress
 - evaporative cooling hampered by humidity

1. Cows of high genetic merit for milk traits

consume more feed

Predictions

 are more efficient (higher FE) than cows of average merit

JMI / FE

High merit Average

2. As THI ', DMI & FE "

Decrease metabolic heat production

Divert resources from production to keeping cool

Average merit

1. Cows of high genetic merit for milk traits

consume more feed

Predictions

- are more efficient (higher FE)
 than cows of average merit
- 2. As THI ', DMI & FE "
- 3. Impact of THI on DMI & FE is greater in cows of high than average merit

Decrease metabolic heat production

Divert resources from production to keeping cool

High merit

Methods

- Langhill Holstein Friesian dairy herd
 - <mark>- 20</mark>04-11
- Cows belonged to 2 genetic lines:
 - high genetic merit for kg fat + protein (Select)
 - UK average (Control)
- Lines managed together

Methods: housing

- Housed year round in a single building
 - natural ventilation
 - open windows
 - gated but otherwise open sections at either side of a loafing area
 - Yorkshire boarded upper walls
- corrugated cement fibre roof with Perspex skylights

Ν

milking

loafing

Methods: animal management

- Cows received a mixed ration
 - ad libitum
 - automatic feed measurement gates
- Milked 3

- Milk yield was expressed as daily fat & protein corrected mik yield (FPCMY)
- FE was FPCMY/DMI

HOKO automatic feed measurement gates

Holstein Friesians at SRUC Dairy Research Centre

Weather data

Centre for Environmental Data Analysis

CIENCE AND TECHNOLOGY FACILITIES COUNCIL IATURAL ENVIRONMENT RESEARCH COUNCIL

- Daily measurements of
 - Temperature
 - Wind speed
 - Relative humidity
 - No. hours of sunshine

• THI was calculated: (1.8 × T_{db} + 32) - ((0.55 - 0.0055 × RH) × (1.8 × T_{db} - 26))

NRC, 1971

- 3-day moving means
 - test day & 2 days before the test day

- Linear, quadratic & cubic terms of continuous fixed effects
- Continuous terms mean-centred

~73,000 daily records from 328 cows

THI affects MY, DMI, FE

Curves are least squares means adjusted for all significant effects in the models

J. Dairy Sci.

THI affects MY, DMI, FE

FE ' with THI under mild conditions; " when heat stress becomes more severe

Curves are least squares means adjusted for all significant effects in the models e.g. condition score, live weight

Summary

- As THI increased
 - milk yield and DMI "
 - FE '
 - Improvements in the efficiency of converting feed to milk may partially offset costs of reduced MY in a warmer future climate

Implications

- Understanding how weather influences productivity & efficiency
 - make predictions using climate scenarios. e.g. UKCP09 models
 - use weather forecasts to inform management
 - breed livestock with improved resilience
- May help adaptation to climate change

Acknowledgements

- Staff at SRUC Dairy Research Centre
 - Ian Archibald
 - Ainsley Bagnall
 - David Bell

Centre for Environmental Data Analysis

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL

Weather data

• Funders:

SARIC * SUSTAINABLE AGRICULTURE RESEARCH & INNOVATION CLUB

Further questions: Davina Hill – <u>davina.hill@cumbria.ac.uk</u> Eileen Wall – <u>eileen.wall@sruc.ac.uk</u>

