EAAP2016, Belfast, UK Session 33

The future of native horse breeds

Presented by Juha Kantanen, PhD, Professor

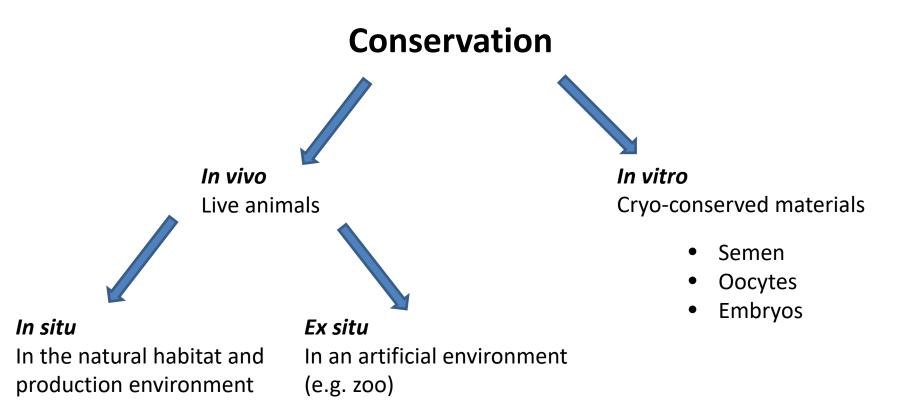
Natural Resources Institute Finland

juha.kantanen@luke.fi

Finnhorse – multipurpose breed

Risk status of horse breeds (FAO 2015)

Risk status	Number of breeds	Breeding females	Breeding males
Unknown	479	?	?
Critical	104	100	5
Critical - Maintained	10	100	5
Endangered	67	100 - 1000	5 – 20
Endangered - Maintained	21	100 – 1 000	5 – 20
Not at risk	137	>1 000	>20
Extinct	87		
TOTAL	905		


Breed relationship tree identifies genetically related breed groups. The tree is based on Illumina 50K SNP BeadChip genotyping of 36 horse breeds (Petersen J.L. et al. 2016. PLOS ONE 8(1): e54997.

The importance of farm animal genetic diversity

- The genetic diversity within a farm animal species is the resource to realise required changes in the phenotypic characteristics of a population. The major breed could benefit from alleles available in minor breeds using crossing and genomic introgression, and genomic marker information to introgress favorable alleles, while keeping favorable alleles for production traits in the major breed
- To maintain adaptation potential of a species
- Insurance against future changes
- Opportunities for research
- Present socio-economic value
- Cultural heritage
- Ecological value

Overview of basic conservation schemes for farm animals

Cryo-conservation of horse semen

- One of the challenges is dealing with the stallion to stallion variability in the cryosurvival of their semen (Loomis P.R. & Graham J.K. 2008. Anim Reprod Sci 105: 119-128).
- Individual sperm physiology affects the ability to survive freezing and thawing
- To understand how these differences affect cryosurvival, we need to understand what happens to cells during cryopreservation, what types of damage occur to the cells and when during the process that damage occurs.
- It is likely that more than one method for cryopreserving sperm will be necessary

Cryo-conservation of horse embryos

- A significant difference between embryo transfer in cattle and horses is that a very predictable superovulation regime is available for cattle and typically six transferable embryos are available from each flush (Squires E.L. & McCue P.M. 2016. J of Equine Vet Sci 41: 7-12).
- In contrast, superovulation is not currently available in horses, and consequently, embryo recovery is based on only one ovulation and generally ranges from 50% to 70% embryo recovery per cycle.
- In research conditions using e.g. equine pituitary
 extract: 2 3 (max. 4) embryos have been obtained.

From 1 stallion and 4 mares to 80 animals

- Effective population size $(N_e) = 34$
- Average inbreeding coefficient of breeding animals 25.6%.
- 12 microsatellites genotyped in 13 horse breeds
- H_{exp} in Faroe Island horse 0.44,
 in other breeds 0.59 0.74
- Genetic relationship among the breeds:
 Icelandic horse is the closest relative.

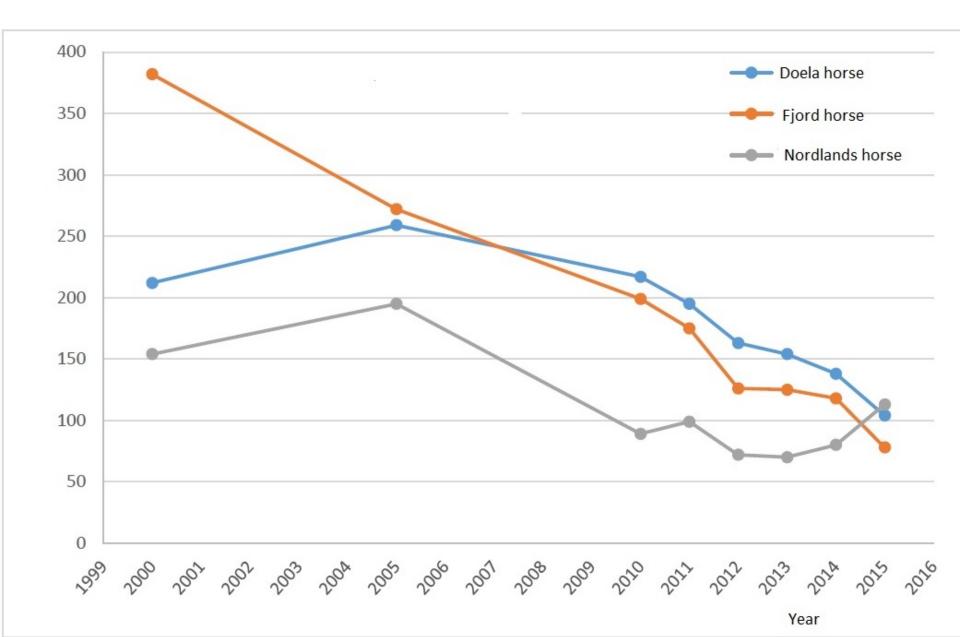
http://www.rossid.com/

References

Berg, P. et al. EAAP2013. Nantes, France Mikko S. et al. 2004. ISAG2004, Tokyo, Japan.

WORKING GROUP REPORT ABOUT THE NORWEGIAN NATIVE HORSE BREEDS

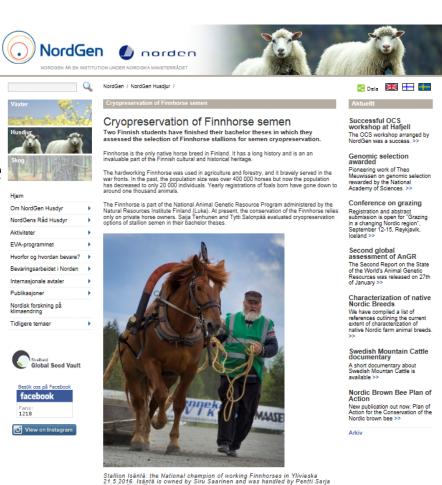
Nordland horse


Fjord horse

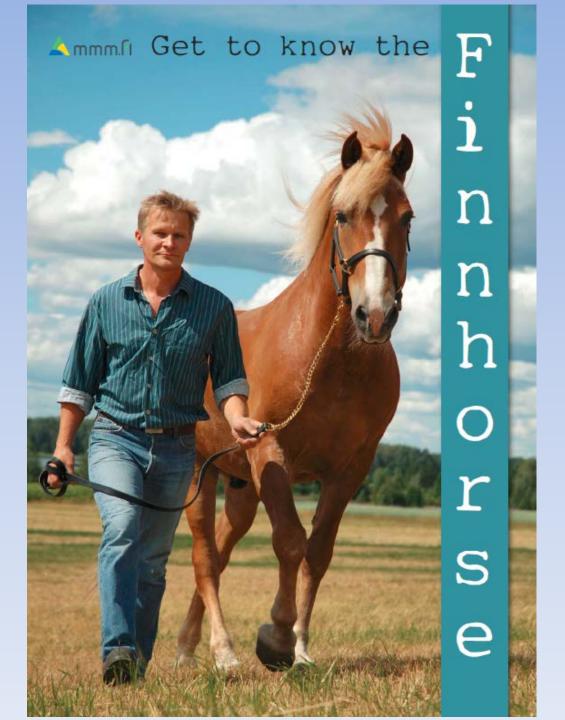
Doela horse

Number of foals born in 1999 - 2015

The Norwegian working group's suggestions


- Some revisions in breeding goals and plans (e.g. rare family lineages should be maintained)
- Cryo-conservation
- Bulding competence in organizations responsible for horse breeding and conservation work
- Utilization of programs in monitoring of inbreeding (EVA program)
- Marketing of the Norwegian native horse
- Indicators for controlling the success of the revised breeding and conservation plan for the Norwegian native horse breeds (number of foals born annually, number of stallions in breeding, inbreeding coefficent)

Finnhorse stallions for cryo-conservation


- Target in the Finnish cryobank:
 25 stallions, 50 100 doses
 per stallion
- EVA program was used to calculate population parameters.
- The suggestions for suitable stallions for cryobanking were based on optimal contribution selection.

Reference: Tenhunen S. & Salompää T. 2016. Selection of Finnhorse stallions for cryopreservation. BSc thesis. Savonia University of Applied Sciences.

LIITE 1: ORILISTA KOKO POPULAATIOSTA, IKÄRAJA 14 VUOTTA

Rekisterinumero	Nimi	Orin tiedot	Kantakirjaus/muut
1520-02	Railin rasmus i. Karski ei. Raino	Syntymäaika: 2.6.2002 Väri: Punarautias	
1043-07	Lenni Mek i. Menni ei. Vekseli	Syntymäaika: 27.4.2007 Väri: Vaaleanpuna rautias	
2254-02	Juholan Jojo i. Likan Poika ei. Vauhti-Poika	Syntymäaika: 17.6.2002 Väri:Punarautias	
1529-04	Kesäsade i. Kesä-Toto ei. Uskimus	Syntymäaika: 25.4.2004 Väri:Punarautias	
1981-03	Virkku-Hirnu i. Vikunen ei. Tosi-Pinko	Syntymäaika: 7.8.2003 Väri:Kulomusta Suuntaus:Pienhevonen	Ei palk KTK
1377-04	Savelan Hemuli i. Lerkkana ei. Jonnen-Valtti	Syntymäaika: 5.6.2004 Väri: Rautias Suuntaus: Ratsu	KTK
1557-03	Pojan Naskali i. Pilven Poika ei. Tosi-Pinko	Syntymäaika: 11.6.2003 Väri: Tummanpuna- rautias	
1868-04	Veihaivei Jii i. Apeli ei. Peto	Syntymäaika: 8.6.2004 Väri: Punarautias Suuntaus: Ratsu	KTK
1604-05	Kvartaali i. Ruutun Ruksi ei. A.P. Passeli	Syntymäaika: 16.6.2005 Väri: Punarautias	
2120-05	Pikku-Laakeri i. Taika-Laakeri ei. Pikku-Muisto	Syntymäaika: 8.6.2005 Väri: Punarautias Suuntaus:Työhevonen	Ei palk KTK
2295-05	Arska Poika i. Pilven Poika ei. Selmeri	Syntymäaika: 3.6.2005 Väri:Punarautias	
246001S00141163	Maarian Arvo i. Knuutilan Veikko	Syntymäaika: 11.5.2014 Väri:Vaaleanruunikko	

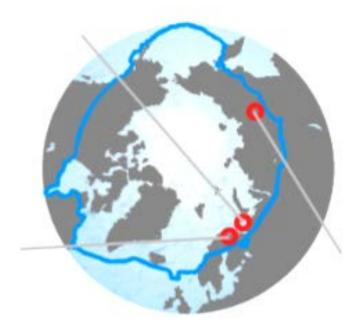
Project on northern and Arctic domestic animals

Arctic Ark. Human-animal adaptations to the Arctic environment: natural and folk selection practices

University of Porto

Yakutian Scientific Research Institute of Agriculture

North-Eastern Federal University in Yakutsk


In the Arctic, traditional animal husbandry is based almost exclusively on reindeer (*Rangifer tarandus*) but in Lapland, northern Russia and Siberia also other locally adapted animals, namely cattle (*Bos taurus*) and horse (*Equus caballus*) are used for food production and other societal and cultural needs.

Arkhangelsk

- Kholmogor cattle
- Mezen horse
- Nenets reindeer

Finnish Lapland

- Northern Finncattle
- Finnhorse
- Fennoscandian reindeer

Yakutia Eveno-Bytantaj

- Yakutian cattle
- Yakutian horse
- Evenki and Even reindeer

The future of native horse breeds: Action points

- Old breeds, new uses
- Repurposing native breeds in tourism, therapy and leisure
- Native breed genetics: genotypes and traits
- Managing small breeding populations
- Scientific innovations in breeding for native breeds
- Native breed horses and place-based identity, traditional knowledge
- Working group, EAAP2017 Session on the topic

Acknowledgements

Pictures, useful materials etc
 Rólvur Djurhuus, Dept. of Agriculture, Faroe Island
 Kirsti Hassinen, Free lancer
 Anu Osva, Bioartist
 Anna Rehnberg, Norwegian Genetic Resource Centre
 Tiina Reilas, Natural Resources Institute Finland
 Nina Saether, Norwegian Genetic Resource Centre

Thank you!

26 11.10.2016

Global plan of action

- Characterization, inventory of genetic resources and monitoring of trends and associated risks
- 2. Sustainable use and development
- 3. Conservation
- 4. Policies, institution and capacity-bulding

11.10.2016

