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Motivation 

 In genomic prediction the conventional A matrix is still in use, e.g.  

 genetic variance not accounted for by markers [λG + (1-λ)A] 
 straightforward calculation of H- in single step using [A22

-1] 
 

 Calculating large A matrices  

 time consuming 
 additional level of complexity in marker based models 
 conceptual regression to the conventional animal model 
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Aim of the study 

 Find a way to represent the information in A in a linear manner 
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Basic idea 

 ‘Gene-Dropping’ (MacCluer et al., 1986) 

 genes ‘dropped’ down the pedigree by a simulated gene flow  
 developed to simulate valid inheritance patterns  
 according to a known pedigree  
 compatible to observed genotypes/phenotypes 

 
Why not generate several thousand virtual SNP genotypes by 

‘gene-dropping’ as a proxy for A in genomic models? 
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Methods I 

 As an illustration: calculation of A matrix from virtual SNPs 

 pedigree of Fleckvieh reference population 

 10/20/50/100k virtual SNPs  

 genotypes randomly assigned to pedigree base animals 
(MAF=.5) 

 dropped through the pedigree  

 function ‘gen.simuSample’, R-library GENLIB 

 easily to parallelize 

 finally: matrix calculation (VanRaden type 1) 

 deviations from true A calculated and plotted 
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Results I 
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Conclusion I 

 Calculation of A matrix by gene-dropping  

 feasible and easy to parallelize  

 faster than most standard algorithms 
 

 50k and 100k dummy SNP  

 random deviations from true A matrix are small 
 

 Is reliability and unbiasedness of genomic predictions affected? 
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Methods II 

 Using true and approximated A matrices in a forward prediction 

 5 traits: MY, FY, PY, STA and UD 
 ~6,700 reference bulls, ~2,200 validation bulls 

 
 Investigated  

 validation reliability 
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Results II: Validation Reliabilities 
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Conclusion II 

 If A matrix is required and marker dimension is not crucial 

 more markers are better but… 
 100k seems to be sufficient in most cases 
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Extending the concept of virtual SNPs 

 Aim: use virtual SNPs directly to represent polygenic component 

 leaner model 
 simplified and fast prediction via SNP effects 

 
 Conceptual problem 

 generation of polygenic component by gene-dropping gives 
slightly different polygenic relationship in each run 
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Methods III 

 Investigation context 

 single-Step SNP-BLUP model (Fernando et al., 2014) 
 50k gene-dropped SNP representing polygenic component 
 routine data for FY and PY 

 
 Subject of investigation: repeatability of solutions obtained with 

the gene-dropping method 

 rank correlations of genomic EBV 
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Results III 
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Results III 

 Rank correlations of GEBV between 3 repeated runs, 50k A-SNPs 
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     Run1 Run2 Run3 
Run1 1.00 1.00 1.00  
Run2      1.00 1.00  
Run3           1.00 

FY: 10% Va PY: 25% Va 

reference animals reference animals 

prediction animals prediction animals 

But: 50k to true >.99 

     Run1 Run2 Run3 
Run1 1.00 0.98 0.97  
Run2      1.00 0.98  
Run3           1.00 

     Run1 Run2 Run3 
Run1 1.00 1.00 1.00  
Run2      1.00 1.00  
Run3           1.00 

     Run1 Run2 Run3 
Run1 1.00 0.92 0.92  
Run2      1.00 0.93  
Run3           1.00 

But: 50k to true >.98 



Conclusion III 

Working with 50k dummy SNP gives satisfying results 

 In consecutive runs  

 deviations from true A are not correlated 
 additional variation arises 

 
 Can be alleviated by  

 keeping an arbitrary proportion of SNPs generated 
 dropping them further, if pedigree is extended 
 using more SNPs 
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General Conclusion  

 Linearization of A matrix by virtual SNPs generated by gene-
dropping might be helpful in many contexts 

 simpler models in SNP-BLUP applications 
 easy and fast prediction via SNP estimates 
 in standard single-step GBLUP: [A22

-1] via APY? 
 nice illustration:  
 unlinked markers do catch pedigree relationship 
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