

Bavarian State Research Center for Agriculture

'Gene dropping A':

Avoiding classical computations of the numerator relationship matrix

C. Edel, E.C.G. Pimentel, R. Emmerling and K.-U. Götz

Institute for Animal Breeding

Motivation

In genomic prediction the conventional A matrix is still in use, e.g.

- genetic variance not accounted for by markers [λG + (1-λ)A]
- straightforward calculation of H⁻ in single step using [A₂₂⁻¹]
- Calculating large A matrices
 - time consuming
 - additional level of complexity in marker based models
 - conceptual regression to the conventional animal model

Aim of the study

Find a way to represent the information in **A** in a linear manner

Basic idea

Gene-Dropping' (MacCluer et al., 1986)

- genes 'dropped' down the pedigree by a simulated gene flow
- developed to simulate valid inheritance patterns
 - ✓ according to a known pedigree
 - compatible to observed genotypes/phenotypes
- Why not generate several thousand virtual SNP genotypes by 'gene-dropping' as a proxy for A in genomic models?

Methods I

As an illustration: calculation of A matrix from virtual SNPs

- pedigree of Fleckvieh reference population
- 10/20/50/100k virtual SNPs
- genotypes randomly assigned to pedigree base animals (MAF=.5)
- dropped through the pedigree
 - ✓ function 'gen.simuSample', R-library GENLIB
 - easily to parallelize
 - finally: matrix calculation (VanRaden type 1)
- deviations from true A calculated and plotted

Results I

Conclusion I

- Calculation of **A** matrix by gene-dropping
 - feasible and easy to parallelize
 - faster than most standard algorithms
- 50k and 100k dummy SNP
 - random deviations from true A matrix are small
- Is reliability and unbiasedness of genomic predictions affected?

Methods II

Using true and approximated **A** matrices in a forward prediction

- 5 traits: MY, FY, PY, STA and UD
- ~6,700 reference bulls, ~2,200 validation bulls
- Investigated
 - validation reliability

Results II: Validation Reliabilities

Using approximated A matrices in forward prec

Results II : Validation Reliabilities

Using approximated A matrices in forward prec

10

Results II : Validation Reliabilities

Using approximated A matrices in forward prec

11

Conclusion II

If A matrix is required and marker dimension is not crucial

- more markers are better but...
- 100k seems to be sufficient in most cases

Extending the concept of virtual SNPs

Aim: use virtual SNPs <u>directly</u> to represent polygenic component

- leaner model
- simplified and fast prediction via SNP effects
- Conceptual problem
 - generation of polygenic component by gene-dropping gives slightly different polygenic relationship in each run

Methods III

Investigation context

- single-Step SNP-BLUP model (Fernando et al., 2014)
- 50k gene-dropped SNP representing polygenic component
- routine data for FY and PY
- Subject of investigation: repeatability of solutions obtained with the gene-dropping method
 - rank correlations of genomic EBV

Results III

SNP effect estimates

Results III

Rank correlations of GEBV between 3 repeated runs, 50k A-SNPs

FY: 10% V_a

reference animals

	Run	1 Run2	Run3
Run1	1.0	0 1.00	1.00
Run2		1.00	1.00
Run3			1.00

prediction animals

	Run1	Run2	Run3
Run1	1.00	0.98	0.97
Run2		1.00	0.98
Run3			1.00

But: 50k to true >.99

PY: 25% Va

reference animals

	Run1	Run2	Run3
Run1	1.00	1.00	1.00
Run2		1.00	1.00
Run3			1.00

prediction animals

	Run1	Run2	Run3
Run1	1.00	0.92	0.92
Run2		1.00	0.93
Run3			1.00

But: 50k to true >.98

Conclusion III

Working with 50k dummy SNP gives satisfying results

In consecutive runs

- deviations from true A are not correlated
- additional variation arises
- Can be alleviated by
 - keeping an arbitrary proportion of SNPs generated
 - dropping them further, if pedigree is extended
 - using more SNPs

General Conclusion

- Linearization of A matrix by virtual SNPs generated by genedropping might be helpful in many contexts
 - simpler models in SNP-BLUP applications
 - easy and fast prediction via SNP estimates
 - in standard single-step GBLUP: [A₂₂⁻¹] via APY?
 - nice illustration:
 - unlinked markers do catch pedigree relationship

Thank you for your attention

We gratefully acknowledge:

Arbeitsgemeinschaft Süddeutscher Rinderzucht- und Besamungsorganisationen

