Single-step GBLUP using APY inverse for protein yield in US Holstein with a large number of genotyped animals

Yutaka Masuda, Ignacy Misztal, and Tom Lawlor

University of Georgia and Holstein Association USA Inc.

Background

- Desirable features in single-step GBLUP (ssGBLUP)
 - Simplicity, avoidance of double counting, and accountability of pre-selection bias
- Breakthroughs in computing difficulties
 - Simple \mathbf{G}^{-1} with the "APY" algorithm (\mathbf{G}_{APY}^{-1})
 - Avoidance of direct computation of A_{22}^{-1}
- How does it work for production traits for US Holsteins?

Objectives

- To validate genomic predictions for young Holstein bulls
 - 305-d protein yield
 - Single-step GBLUP with \mathbf{G}_{APY}^{-1}
 - Comparison with the official GPTA from a multi-step method

Full data

	Description	Number of records/animals
Phenotype	Protein yield (305-d basis) for US Holstein cows recorded between Jan. 1990 and Apr. 2015	37,259,427
	Cows with phenotype(s)	15,891,366
Pedigree	Animals born in Apr. 2015 or earlier (3- gen. back from phenotyped cows)	22,963,255
Genotype	Animals born in Apr. 2015 or earlier	764,029
	SNP loci	60,671

Validation study

Validation Bulls: Genotyped young bulls with no tested daughters in 2011 but with at least 50 tested daughters in 2015 (N=3,797)

 $DYD2015 = b_1 \times GPTA2011 + b_0$

- R² value: validation reliability
- Slope (*b*₁): Bias of prediction

Model

- Single-trait repeatability model
 - Similar to the official model ($h^2 = 0.20$ and rep. = 0.55)
- Single-step GBLUP

•
$$\mathbf{A}^{-1}$$
 replaced with $\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}_{APY}^{-1} + \omega \mathbf{A}_{22}^{-1} \end{bmatrix}$

• "Core" and "noncore" animals in \mathbf{G}_{APY}^{-1} :

$$\mathbf{G}_{APY}^{-1} = \begin{bmatrix} \mathbf{G}_{cc}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} -\mathbf{G}_{cc}^{-1}\mathbf{G}_{cn} \\ \mathbf{I} \end{bmatrix} \mathbf{M}^{-1} \begin{bmatrix} -\mathbf{G}_{cn}'\mathbf{G}_{cc}^{-1} & \mathbf{I} \end{bmatrix}$$

Core animals: Bulls with at least 1 tested daughter before 2011 (~13K)

Genotyped animals

Genotyped animals	# of genotyped animals
All	764,029
Known parents	656,313
Bulls	139,057
Proven bulls	19,622
Bulls + cows with record(s)	27,2029
Proven bulls + cows with record(s)	152,594

Core animals: Bulls with at least 1 tested daughter before 2011 (~13K)

Results

Prediction	Method	Genotypes	R ²	b1 slope
Official PTA	BLUP	NA	0.27	0.71
Official GPTA*	BayesA-type	Reference(>20K)	0.51	0.81
Single-step	ssGBLUP	All (760K)	0.45	1.06

* Included internationally-evaluated foreign bulls without daughters in the US.

Results

				b1
Prediction	Method	Genotypes	R ²	slope
Official PTA	BLUP	NA	0.27	0.71
Official GPTA*	BayesA-type	Reference(>20K)	0.51	0.81
Single-step	ssGBLUP	All (760K)	0.45	1.06
		Known parents (660K)	0.47	1.09
		Bulls (140K)	0.50	0.98
		Proven bulls (20K)	0.51	0.84
		Bulls + cows (270K)	0.50	0.96
		Proven bulls + cows (150K)	0.50	0.98

* Included internationally-evaluated foreign bulls without daughters in the US.

Genotyped animals

Phenotypes removed in validation

QTL effect of DGAT1

- A DGAT1 marker captured with commercial SNP panels
- Estimation of substitution effect (β)
 - Using 14,376 bulls with DYD reliability >= 72.5% (i.e. DE >= 50)
 - $DYD = \mu + \beta * GeneContent + u + e$
 - $\beta = 8.69 \ (\pm 0.51)$ for protein yield
- Blended GPTA
 - $GPTA^* = GPTA + 0.5\beta * GeneContent$

Results (Blended GPTA)

		GPTA		Blended GPTA	
Model	Genotypes	R ²	b1	R ²	b1
Official PTA	NA	0.27	0.71		
Official GPTA*	Reference(>20K)	0.51	0.81		
Single-step	All (760K)	0.46	0.97	0.47	0.93
	Bulls (140K)	0.50	0.98	0.51	0.92

* Included internationally-evaluated foreign bulls without daughters in the US.

Summary

- Single-step GBLUP provides GPTA with much less bias and similar accuracy compared to the official prediction.
- Extra genotyped animals don't improve the accuracy of prediction.
- Inclusion of major gene effect can slightly contribute to R² with little inflation in GPTA.

Acknowledgement

- U.S. Department of Agriculture's National Institute of Food and Agriculture (Agriculture and Food Research Initiative competitive grant 2015-67015-22936)
- Paul VanRaden, George Wiggans, Melvin Tooker, and John Cole (Animal Genomics and Improvement Laboratory)
- Council on Dairy Cattle Breeding

