# Single-step Marker Assisted Selection in breeding value estimation:

Do markers add value?

Birgit Zumbach, Marcos Lopes, Susan Wijga, Rob Bergsma, Egbert Knol



PROGRESS IN PIGS

# Use of genotype information in breeding value estimation

**SNPs from BLUP GWAS EBV** + Weights \* **MBV** from Pedigree **Single-step GEBV MBV** with H<sup>-1</sup> Single-step GEBV with H<sup>-1</sup>

#### **MA-ssGBLUP**



- GEBV=single step GBLUP Breeding Value
- **MBV**= Breeding value due to the effect of special markers with a large effect in GWAS analyses (**MBV**= $\sum_{i=1}^{n} p_i * m_i$ )) m= marker effect, p=number of copies of an allele/genotype probability, n=number of markers
  - MA-GEBV=Single step Marker assisted breeding value (MA-GEBV=GEBV+MBV)

#### **GWAS** for Number of teats

Duijvesteijn et al. BMC Genomics 2014, 15:542 http://www.biomedcentral.com/1471-2164/15/542



#### RESEARCH ARTICLE

**Open Access** 

High-resolution association mapping of number of teats in pigs reveals regions controlling vertebral development

Naomi Duijvesteijn<sup>1\*</sup>, Jacqueline M Veltmaat<sup>2</sup>, Egbert F Knol<sup>1</sup> and Barbara Harlizius<sup>1</sup>

#### **GWAS** for Number of teats

#### Using markers with large effect in genetic predictions

Marcos S Lopes<sup>1,2</sup>, Henk Bovenhuis<sup>2</sup>, Maren van Son<sup>3</sup>, Øyvind Nordbø<sup>3</sup>, Eli H Grindflek<sup>3</sup>, Egbert F Knol<sup>1</sup>, John WM Bastiaansen<sup>2</sup>

Topigs Norsvin Research Center, 6640 AA, Beuningen, the Netherlands;
 Wageningen University, Animal Breeding and Genomics Centre, 6700 AH, Wageningen, the Netherlands,
 Norsvin, 2317, Hamar, Norway



QTL at SSC7, pos ~103 MB Comparable to DGAT in Holstein

**GWAS** on number of teats in four pig populations

# Number of teats GWAS SNPs – Large White

| SNP | Chrom. | Position<br>(MB) | SNP effect<br>(GWAS) |
|-----|--------|------------------|----------------------|
| 1   | 7      | 103.5            | 0.33                 |

# Number of teats GWAS SNPs – Large White

| SNP | Chrom. | Position<br>(MB) | SNP effect<br>(GWAS) |
|-----|--------|------------------|----------------------|
| 1   | 7      | 103.5            | 0.33                 |
| 2   | 10     | 52.6             | 0.12                 |
| 3   | 12     | 40.0             | 0.11                 |
| 4   | 16     | 30.7             | 0.11                 |

# **Genotype probabilities**

#### **Genotyped animals**

N~14,000

Real genotypes

| Id | M1 | M2 | М3 | М4 |
|----|----|----|----|----|
| 1  | 0  | 1  | 2  | 2  |
| 2  | 2  | 1  | 0  | 0  |
| 3  | 2  | 1  | 1  | 0  |

#### **Genotyped and non-genotyped animals**

N~740,000

Genotype probabilities

Id M1 M2 M3 M4
1 0.125 0.963 1.753 1.641
2 1.832 1.106 0.403 0.102
3 1.792 1.112 0.875 0.305

Genotype probability:  $y = \mu + a + e$ Va=0.99; Ve=0.01

→ Scale to range [0;2]

→ Genotype probability also for non-genotyped animals

# **Genotype probabilities**

Range of genotype probabilities: < 0 to > 2

→ Transformation to a range [0,2]

$$f(x) = \frac{(b-a)(x-min)}{\max - min} + a$$

x= genotype probability min=minimum genotype probability max=maximum genotype probability a=minimum of new range=0 b=maximum of new range=2

# Reproduction data Large White

#### Phenotypes:

- January 1995 to November 2015
- 13 traits

## Number of teats - simple statistics

| N       | Mean | SD  | Min | Max |
|---------|------|-----|-----|-----|
| 735,971 | 15.1 | 1.2 | 8   | 20  |

~14,000 genotypes



#### **Statistical Model**

MiXBLUP single trait / 13-trait evaluation

Number of teats = fixed effects +  $\mathbf{a}$  +  $\mathbf{e}$ 

→ ssGEBV

#### **Statistical Model**

#### MiXBLUP single trait / 13-trait evaluation





p = number of copies of allele / genotype probability; n=number of markers;

### **Validation**

|            | N       | Mean | SD  | # typed |
|------------|---------|------|-----|---------|
| Training   | 539,106 | 14.9 | 1.1 | 8,767   |
| Validation | 196,865 | 15.5 | 1.1 | 4,961   |

Validation = 27% youngest animals; 36% genotypes

## **Results: SNP effects**

| SNP | Single Trait<br>(4 SNPs) | 13-Trait<br>(4+10 SNPs) | GWAS |
|-----|--------------------------|-------------------------|------|
| 1   | 0.39                     | 0.39                    | 0.33 |

# **Results: SNP effects**

| SNP | Single Trait<br>(4 SNPs) | 13-Trait<br>(4+10 SNPs) | GWAS |
|-----|--------------------------|-------------------------|------|
| 1   | 0.39                     | 0.39                    | 0.33 |
| 2   | 0.14                     | 0.18                    | 0.12 |
| 3   | 0.14                     | 0.14                    | 0.11 |
| 4   | 0.10                     | 0.16                    | 0.11 |

# **Results: Predictive Ability**

Correlation between adjusted phenotype and predicted breeding value - 13-trait model, genotyped animals -

| Breeding value | NTE SNP 1<br>+ 10 |
|----------------|-------------------|
| MBV            | 0.130             |
| GEBV           | 0.449             |
| MA-GEBV        | 0.465             |
| ssGEBV         | 0.462             |

# **Results: Predictive Ability**

Correlation between adjusted phenotype and predicted breeding value - 13-trait model, genotyped animals -

| Breeding value | NTE SNP 1<br>+ 10 | NTE SNPs 1-4<br>+ 10 |
|----------------|-------------------|----------------------|
| MBV            | 0.130             | 0.208                |
| GEBV           | 0.449             | 0.428                |
| MA-GEBV        | 0.465             | 0.469                |
| ssGEBV         | 0.462             | 0.462                |

# **Discussion**

# Using markers with large effect in genetic predictions

Marcos S Lopes<sup>1,2</sup>, Henk Bovenhuis<sup>2</sup>, Maren van Son<sup>3</sup>, Øyvind Nordbø<sup>3</sup>, Eli H Grindflek<sup>3</sup>, Egbert F Knol<sup>1</sup>, John WM Bastiaansen<sup>2</sup>

<sup>1</sup> Topigs Norsvin Research Center, 6640 AA, Beuningen, the Netherlands;
<sup>2</sup> Wageningen University, Animal Breeding and Genomics Centre, 6700 AH, Wageningen, the Netherlands, <sup>3</sup>
Norsvin, 2317, Hamar, Norway

# Size of reference population

| Population               | # genotypes<br>Training | predictive ability |            |  |
|--------------------------|-------------------------|--------------------|------------|--|
| Population               |                         | ssGBLUP            | MA-ssGBLUP |  |
| Large White              | 2,620                   | 0.361              | 0.370      |  |
| Norwegian Landrace - all | 6,090                   | 0.474              | 0.477      |  |

# Size of reference population

| Population               | # genotypes | predictive ability |            |  |
|--------------------------|-------------|--------------------|------------|--|
| ropulation               | Training    | ssGBLUP            | MA-ssGBLUP |  |
| Large White              | 2,620       | 0.361              | 0.370      |  |
| Norwegian Landrace - all | 6,090       | 0.474              | 0.477      |  |
| -reduced                 | 2,400       | 0.423              | 0.446      |  |

# Size of reference population

| Population               | # genotypes<br>Training | predictive ability |            |  |
|--------------------------|-------------------------|--------------------|------------|--|
| Population               |                         | ssGBLUP            | MA-ssGBLUP |  |
| Large White              | 2,620                   | 0.361              | 0.370      |  |
| Norwegian Landrace - all | 6,090                   | 0.474              | 0.477      |  |
| -reduced                 | 2,400                   | 0.423              | 0.446      |  |
| Large White - 1 SNP      | 8,767                   | 0.462              | 0.465      |  |

# **Summary**

- Trait with obvious QTL
- SNP effects MA-ssGBLUP are similar to GWAS SNP effects
- MA-GBLUP run:
  - Increase in accuracy of MBV → Reduction in accuracy of GEBV
  - → Part of animal variance is shifted toward the SNP effects
- Marginally increased accuracy of MA-ssGBLUP vs ssGBLUP
- GWAS and calculation of genotype probabilities for MA-ssGBLUP

#### Conclusion

Large enough genotyped animals in reference population

negligible increase in accuracy

=> No added value of MA-ssGBLUP

# Thank you!

Birgit.Zumbach@topigsnorsvin.com

