

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

# Increase phasing accuracy of selected reference populations

### **Markus Neuditschko**



31. August 2016, EAAP Annual Meeting 2016, Belfast

Current practice

Swiss national Stud Farm SNSTF

Agroscope

- Existing methods for the selection of informative individuals for re-sequencing and genotype imputation solely focus on the identification of key ancestors.
- Selecting only key ancestors can lead to a loss of phasing accuracy of the reference population.
- To increase phasing accuracy of the selected reference populations, we developed a novel approach to select key contributors based on the eigenvalue decomposition of a genomic relationship matrix.







# Eigenvalue Decomposition (EVD)

- Eigenvalue Decomposition (EVD) like PCA is a multivariate technique that provides an optimal subspace to investigate population structures.
- Based upon this mathematical principle, we identified individuals that maximize the variation of the genetic relationship structure.
- As such individuals capture most of the relevant genetic relationship structure we called them "key contributors".

# Identification of key contributors

• The EVD of genomic relationship matrix (*G*) returns *n* nonnegative eigenvalues  $\lambda_i$  and *n* singular eigenvectors  $u_i$ , such that:

$$G = \boldsymbol{U} \boldsymbol{\lambda} \, \boldsymbol{U}^T \qquad 1.1$$

Based upon this principle we derived standardized eigenvectors (s<sub>i</sub>) and calculated the correlation coefficients (r<sub>j</sub>) between s<sub>i</sub> and each individual (g<sub>j</sub>) limiting the number of s<sub>i</sub> to k significant components

$$r_j = \sum_{i=1}^k s_i g_j$$
 1.2

# Identification of key contributors

Finally, we rank all individuals according to the genetic contribution score (gc<sub>j</sub>) and consider individuals correlated with top k significant components as key contributors

$$gc_j = \sum_{i=1}^k (r_i)^2$$
 1.3

The method to identify key contributors within populations is available online at <u>https://github.com/esteinig/netview</u>.

# Phasing accuracy

- To demonstrate the utility of our strategy to increase phasing accuracy, we compared the phasing accuracy of selected individuals with two common applied methods.
  - (1) Pedigree-based marginal gene contributions (PED)
  - (2) Maximization of the expected genetic relationship to the reference population (REL)
- After selecting sets of informative individuals (20 80) the inferred haplotype phase was compared with the true or most likely haplotype phase.
- Phasing accuracy was examined using switch-error metric.



#### (1) Simulated population

Base population (F0) of 1,020 individuals (20 males and 1,000 females), by mating each male with 50 females. Each of the next four generations (F1-F4) also consisted of 20 males and 1,000 females and was generated following the same principle. Resulting in a total of 4,100 individuals and 10,000 SNPs.

#### (2) Sheep population

The sheep population represents and experimental backcorss/intercross sheep resource flock, where 4 F1 sires and 3 F2 sires were selected for mating. Here, we studied 1,421 individuals genotyped for 44,693 SNPs.

#### (3) Horse population

The horse population consisted of a sample collection of 1,077 Franches-Montagnes horses genotyped for 38,124 SNPs.

#### (4) Cattle population

The cattle population represents 2,457 progeny-tested Australian Holstein-Friesian bulls genotyped for 45,765 SNPs.

## Results – Identification of key contributors



## Results – Identification of key contributors



REL

REL



## Results – Phasing accuracy

Table. Switch error rates of the selected reference populations within the four datasets.

| Strategy | Simulated Data<br>(N=115) | Sheep Data<br>(N=7) | Horse Data<br>(N=41) | Cattle Data<br>(N=55) |
|----------|---------------------------|---------------------|----------------------|-----------------------|
| CON      | 0.35%                     | 0.26%               | 0.62%                | 1.64%                 |
| REL      | 4.27%                     | 0.31%               | 1.52%                | 3.48%                 |
| PED      | 0.41%                     | 0.27%               | 0.74%                | 2.10%                 |
| RAN      | 1.39%                     | 0.94%               | 0.97%                | 1.70%                 |

## Results – Phasing accuracy



Agroscope Swiss national Stud Farm SNSTF

# Conclusion

- Our approach can be successfully applied to identify key contributors (ancestors and influential progeny) within complex population structures.
- With the application of key ancestors it becomes feasible to increase phasing accuracy of selected reference populations.
- REL strategy maximizes genetic diversity, which is not necessarily connected with the identification of key ancestors (simulated data).
- The identification of key ancestors can also support highresolution population structure analyses (e.g. in combination with model-based clustering and network visualization).



## Thank you for your attention



#### Agroscope Swiss national Stud Farm