Dry period plane of energy: Effects on glucose tolerance in peripartum dairy cows

Mann S., Leal Yepes F.A., Wakshlag J.J., Overton T.R., Cummings B.P., Nydam D.V.

Cornell University, Ithaca, NY

Contact: sm682@cornell.edu

INTRODUCTION

INTRODUCTION

INTRODUCTION

HYPOTHESIS

Overfeeding energy during the dry period

- affects regulation of blood glucose concentration, and
- affects peripartal glucose tolerance

predisposing cows to hyperketonemia and increased lipolysis postpartum

TREATMENT GROUPS

Lactation ≥ 2, housed in individual tie-stalls with feed buckets, all diets fed ad libitum, all animals fed same fresh cow TMR, enrollment randomized block design

DIET COMPOSITION (%DM)

Controlled

Intermediate

High

SAMPLING TIME POINTS

Intravenous Glucose Tolerance Test (IVGTT) 0.25 g/kg glucose i.v. as 50% solution

IVGTT + BASELINE SAMPLES

Baseline values: Glucose, Insulin, NEFA, BHBA, glucagon

All timepoints: Glucose, Insulin, NEFA

ANALYSIS

- Laboratory analysis
 - Heparinized plasma within 30 min after collection, snap frozen and stored at -20°C
 - Glucose and NEFA by enzymatic colorimetric method (Sigma, Wako)
 - Insulin and glucagon by radioimmunoassay (Millipore)
 - BHBA cow-side (Precision Xtra, Abbott)
- Statistical analysis (SAS 9.3)
 - For IVGTT: Area under the curve (AUC) (Cardoso et al. 2011) positive incremental area from baseline
 - Mixed-effects ANOVA (fixed effect of treatment group, random effect of enrollment block)
 - Tukey's posthoc test for differences among the groups

RESULTS: RATION ANALYSIS

Variable	Controlled	I-med	High
ME (Mcal/kg) ^a	1.98	2.12	2.23
Energy balance (% of req.) ^a	112	126	153
Total MP Available ^a (g/day)	1492	1523	1518
MP (% of req.) ^a	124	123	118
NDF (% DM) ^b	48.4	42.2	41.0
Starch (% DM) ^b	15.0	20.1	23.7

Wet chemistry analysis Dairy One Coop. Ithaca; ^a CNCPS v.6.1 estimation ; ^baverage of 10 monthly composites

RESULTS: AREA UNDER CURVE

RESULTS: BASELINE GLUCOSE

RESULTS

RESULTS

SUMMARY

- Feeding a <u>high</u> compared with a <u>controlled</u> energy dry diet was associated with:
 - Effect on blood glucose and pancreatic hormone concentrations, especially early postpartum
 - No effect on glucose clearance or insulin response as assessed by IVGTT
 - Increased NEFA concentrations —> increased lipolysis
 - Increased concentrations of BHBA postpartum

FUTURE DIRECTION

Cause(s) of change in resting glucose concentration postpartum ?

FUTURE DIRECTION

Cause(s) of change in resting glucose concentration postpartum ?

FUTURE DIRECTION

Cause(s) of change in resting glucose concentration postpartum ?

ACKNOWLEDGEMENTS

The <u>Nydam</u>, <u>Overton</u>, and <u>Wakshlag</u> labs

- Francisco Leal Yepes, Charlene Ryan, Mélissa Dupléssis, Lauren Stanko Bristol, Bryant Stuttle, Tameeka Williams
- Endocrinology lab at AHDC
- <u>Cummings</u> lab

and

 Cornell Teaching & Research Dairy staff and Gladys Birdsall

Resources

- Work supported by Agriculture and Food Research Initiative Competitive Grant no. 2012-67015-30230 and FCF from the USDA National Institute of Food and Agriculture.
 - "Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the authors and do not necessarily reflect the view of NIFA or the USDA"
- Cornell University College of Veterinary Medicine Graduate Research Assistantship

MILK AND ECM YIELD

Tx*Time *P*=0.31, Tx *P*=0.98, Time P < 0.001

Tx*Time *P*=0.92, Tx *P*=0.48, Time P < 0.001

LACTOSE YIELD AND CONCENTRATION

Tx*Time *P*=0.88, Tx *P*=0.53, Time P < 0.001

GLUCOSE CURVES IVGTT

INSULIN CURVES IVGTT

NEFA REDUCTION IVGTT

DIET COMPOSITION AND PREDICTED INTAKE (KG DM)

Corn silage	3.6	Corn silage	5.8	Corn silage	8.2
Wheat straw	4.6	Wheat straw	3.3	Wheat straw	1.8
Concentrate (C)	4.6	Concentrate (C) (H)	2.5 2.2	Concentrate (H)	4.6
Total	12.8	Total	13.8	Total	14.6
	A SURVICE		SA XWO		CALLER C

Controlled

Intermediate

High

HYPERKETONEMIA

Number of positive episodes by 21 DIM

CLINICAL KETOSIS

Clinical ketosis cases = [BHBA]≥ 2.5 mmol/L

DRY MATTER INTAKE

MOLAR INSULIN: GLUCAGON RATIO

Day 4 postpartum:

	C (n=19)	l (n=19)	H (n=19)	Ρ
I:G ratio	0.30 ^a	0.40 ^a	0.13 ^b	0.02
(95% CI)	(0.20-0.50)	(0.20-0.70)	(0.10-0.20)	

Row means with different letters showed *P*<0.10 in one-way ANOVA and post-hoc Tukey's HSD

NEFA AUC

ENERGY BALANCE PREPARTUM

EBAL prepartum CNCPS

ENERGY BALANCE POSTPARTUM

EBAL postpartum CNCPS

NEFA AND BHBA POSTPARTUM

Tx*Time *p*=0.36, Tx *p*=0.04

NEFA AND BHBA PREPARTUM

BHBA prepartum

Tx*Time *p*=0.03, Tx *p*=0.001

Tx*Time *p*=0.03, Tx *p*=0.04