

A Novel Method to Prevent Hypocalcemia? Can we improve cow longevity and health in the herd? Laura L. Hernandez, Ph.D.

 75% of production diseases occur in the 1st month after calving (LeBlanc et al., 2006)

- 25% of all herd losses occur during the first 60 DIM (Nordlund and Cook, 2004; Godden et al., 2012)
- The majority leave due to involuntary reasons such as (Grummer et al., 2004; Nordlund, 2006; Mulligan and Doherty, 2008):
 - Death (35%)
 - Injury/disease (30%)

When Cows Leave the Herd and Risk of Leaving the Herd

Disease Incidence in Dairy Cows During the first 60 DIM

McConnell et al., 2009

Importance of Calcium in Lactation

- Milk provides calcium needed for rapid skeletal growth in offspring
- 80g/day into milk during lactation (~2x more in colostrum)
- Calcium partially comes from increased absorption of intestine of calcium
- Some is provided by kidney retention of calcium
- Primary contributor is release of calcium <u>from bone</u> (negative feedback)
 - 9-13% of bone mass lost in cattle (Goff, 2008)
 - Reversible bone loss (lactational specific osteoporosis)
 - This is thought to be primarily controlled by parathyroid hormone related-protein (PTHrP) production in the mammary gland, may be involvement of PTH/Vitamin D as well

Change in Calcium Status at Parturition

- During <u>late pregnancy</u> calcium is lost from the blood to the fetus at a rate of 80 mg/kg^{3/4} (Horst et al., 2006)
- During <u>early lactation</u> calcium is lost from the blood to the milk at a rate of 500 mg/kg^{3/4} (Horst et al., 2006)
- Cows will deplete their blood pool of calcium 20-30x per day in order to put sufficient calcium into milk (Goff, 2008)
- Right at calving, bone resorption is decreased in dairy cattle (Horst et al., 2006)
- Lose calcium much more quickly than other species due to complete milk removal at 2-3x/day

Calcium Flux During Lactation

Hypocalcemia

Goff, 2008; Martín-Tereso and Verstegen, 2011; Chapinal et al., 2011

Hypocalcemia in dairy cattle

- US dairy industry suffers an estimated loss of <u>~\$590m-730m per</u> <u>year attributed to hypocalcemia</u> (est. from Hare et al., 2006; Oetzel, 2013)
- Hypocalcemia has been associated with an increased risk of production losses, displaced abomasum, metritis, reproductive deficiencies, and ketosis (Adams et al., 1996)

 Recent study has shown <2.2mM total circulating blood Ca has been linked to increased risk of displaced abomasum (Chapinal et al., 2011)

Martinez et al., 2012

Table 1. Herd-level associations of increased metabolite concentrations in wk +1 relative to calving with displaced abomasum, controlling for region (n = 55 herds)

Metabolite	Herd-level threshold ¹ (%)	Farms above threshold (%)	OR^2	CI	P-value
All cows BHBA ³ >1.400 µmol/L	>25	15	2.1	1.0 - 4.2	0.04
Calcium $\leq 2.1 \text{ mmol/L}$	≥ 35	24	2.4	1.3 - 4.3	0.003
Multiparous cows only BHBA ³ >1.400 µmol/L	>25	21	1.8	1.0-3.3	0.04
Calcium $\leq 2.1 \text{ mmol/L}$	≥ 30	43	1.9	1.2 - 3.0	0.004

¹Expressed as percentage of sampled cows in the high-risk metabolite concentration group.

²Odds ratio; odds of displaced abomasum in a high-risk herd (above the herd-level threshold) compared with a low-risk herd (below the herd-level threshold).

³Serum BHBA.

Table 2. Herd-level associations of increased metabolite concentrations in wk -1 and +1 relative to calving with milk production (kg/d) at the first DHIA test (n = 45 herds)

Metabolite	Herd-level threshold ¹ (%)	Farms above threshold (%)	Estimate (kg/d per cow)	SE	P-value
All cows ² wk -1 BUBA ³ >800 umol/I	>15	16	44	17	0.01
BHBA ≥000 µmor/L	215	10	-4.4	1.7	0.01
Calcium ≤2.1 mmol/L Multiparous cows only	215	73	-3.8	1.4	0.01
$^{wk -1}$ $NEFA^4 \ge 0.5 \text{ mEq/L}$ $BHBA^3 \ge 800 \mu mol/L$ $mk \pm 1$	≥ 30 ≥ 20	36 11	$-3.0 \\ -5.5$	$\frac{1.5}{2.2}$	0.04 0.01
Calcium $\leq 2.1 \text{ mmol/L}$	≥ 25	55	-2.9	1.4	0.05

¹Expressed as percentage of sampled cows in the high-risk metabolite concentration group.

²Controlling for the proportion of primiparous cows sampled in the herd.

³Serum BHBA.

⁴Serum NEFA.

Chapinal et al., 2012

Calcium mobilization from bone is stimulated by mammary secretion of *parathyroid hormone-related protein* (PTHrP)

- Closely related at its N-terminal end to PTH
- Signals through the same GPCR
- Synthesized and secreted by "non-parathyroid gland tissues"
- Paracrine/autocrine factor
- Only detected in the circulation during lactation and during metastatic bone cancer

Ca movement in the mammary gland controls systemic Ca concentrations

5-HT Synthesis

Adapted from Wang et al., 2002

How does mammary 5-HT contribute to bone turnover in lactation?

Hernandez et al. 2012, AJP

Relationship of 5-HT and Calcium on D1 Lactation in Dairy Cattle

Laporta et al., 2013: Journal of Dairy Science

Farm 1-Jerseys

Moore et al., 2015; J. Dairy Sci

Farm 2-Holsteins

Moore et al., 2015; J. Dairy Sci

Can We Give Dairy Cows 5-HTP and Impact Calcium Metabolism?

Calcium Homeostasis in response to acute 5-HTP infusion Calcium

DEPARTMENT OF DAIRY SCIENCE University of Wisconsin-Madison

4.0 Total Calcium (mM) 3.8-3.6-0 mg/kg 0.5 mg/kg 3.4-1.0 mg/kg 1.5 m/kg 3.2-3.0 0 5 10 120 30 60 90

Minutes after 5-HTP infusion

PTHrP

Minutes after 5-HTP infusion

-100

Laporta et al., 2015; J. Endocrinol.

Can We Give Dairy Cows 5-HTP and Impact Calcium Metabolism Post-Calving? Are there differences between how Holstein and Jersey Cows respond?

5-HTP infusion pre-calving improves Ca at Transition

5-HTP infusion pre-calving improves Ca at Transition

Weaver et al., 2016: J. Endocrinol.

Mooving Forward. DAIRY SCIENCE AT WISCONSIN

