

Once recorded metabolic adaptation does not allow to predict longevity in dairy cows

- J.J. Gross¹, L. Grossen-Rösti¹, F. Schmitz-Hsu², <u>R.M. Bruckmaier¹</u>
- ¹⁾ Veterinary Physiology, Vetsuisse Faculty University of Bern, Switzerland
- ²⁾ Swissgenetics, Zollikofen, Switzerland

EAAP 2016, Belfast, UK

Background

- In dairy cows body reserves are mobilized in early lactation, often leading to metabolic disorders (Kessel et al., 2008; Gross et al., 2011)
- Excessive mobilization of adipose tissue:
 - \Rightarrow high FFA and ketone bodies
 - \Rightarrow compromised immune system
 - ⇒ reduced gluconeogenesis and feed intake

(Laeger et al., 2010; Zarrin et al., 2013; 2014)

Background

Similar performance – different metabolic adaptation

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Universität Bern | Universität Zürich

Veterinary Physiology

Kessel et al., JAS 2008

Background

Culling takes commonly place because of production diseases, based on metabolic disorders and related disturbances of the immune system (Ahlman et al., 2011; Pinedo et al., 2014)

Goal

Is the success of metabolic adaptation recorded in one lactation related to lifetime performance and longevity?

Veterinary Physiology Material and Methods

2007/2008

UNIVERSITÄT

- Field study on metabolic adaptation conducted in Switzerland 232 pluriparous cows from 64 commercial farms
- Breeds: Holstein, Brown Swiss, Swiss Fleckvieh
- Sampling in lactation 3-14; mean: 5±2 parities at sampling
- Blood was sampled in weeks 3 before, 4, and 13 after parturition (analysis of various plasma parameters including glucose, FFA, BHBA, IGF-1).

In 2015:

- New contact with farmers involved in the field study
- Age of animals at culling, performance data
- Calculation of relationships between metabolic load in early lactation (wk 4), life-time performance, and causes for culling.

BERN

Time of birth and culling, and period of blood sampling of the experimental cows

Boxes: 25 to 75 percentiles; whiskers: 5 to 95 percentiles; line in box: median

Universität Bern | Universität Zürich vetsuisse-fakultät

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Performance data, and metabolic and endocrine parameters in early lactation (wk 4 post partum)

Veterinary Physiology

Variable	Mean	SD	Minimum	Maximum
Age at culling (years)	9.3	2.5	4.7	20.2
No. of lactations at culling	6.6	2.2	3	17
Total DIM	2028	730	671	5676
Lifetime milk production (kg)	49301	20238	16182	159839
Milk yield per d of life (kg/d)	14.2	2.9	5.1	23.5
Milk yield per DIM (kg/d)	24.1	3.1	13.9	36.3
FFA (mmol/L)	0.33	0.21	0.05	0.97
BHBA (mmol/L)	1.51	1.13	0.21	5.73
Cholesterol (mmol/L)	3.66	0.72	1.59	6.33
Triglycerides (mmol/L)	0.15	0.04	0.05	0.30
Glucose (mmol/L)	3.02	0.53	1.80	5.55
Insulin (μU/mL)	10.2	7.3	1.0	40.3
IGF-1 (ng/mL)	69.1	27.3	14.5	160.8

Distribution of culling age and performance

Culling at parity no.	Culling % of 232 cows	Lifetime performance kg	Performance/ day of life kg	Peformance/ DIM kg
3-4	18	27188	12.7	23.8
5-6	42	39716	13.1	23.7
7-8	27	56261	14.6	24.2
9-17	13	76854	16.5	24.7

Plasma metabolites in wk 4 vs. lifetime performance

No significant correlations!

Low, but significant correlations (p<0.01) IGF-1 vs. lifetime performance: r = -0.2 FFA vs. performance/DIM: r = 0.2

Summary and Conclusions

- None of the cows studied had a particularly short lifetime in the study (for experimental reasons).
- Despite this fact a wide range of plasma concentrations of key metabolic factors occurred, partially indicating an enormous metabolic load.
- Longevity has a positive impact on lifetime performance of cows.
- Contrary to wide spread assumptions, a higher metabolic load in early lactation did not necessarily result in an earlier culling of dairy cows, although they might be more prone to metabolic disorders.

Longevity - coping with all circumstances

Thank you for listening!

