

67<sup>th</sup> Annual Meeting of the European Federation of Animal Science

Belfast UK, 31 Aug 2016

SESSION 43



## Assessing the efficacy of improved animal welfare to control Campylobacter contamination in poultry

S. Messori, E. D' Erasmo, E. Di Giannatale, P. Dalla Villa, F. Pomilio & L. Iannetti



## **Background**

- **Faecal shedding** of pathogens can increase after transport and feed withdrawal in poultry
- The existing literature about the impact of farming and slaughtering management on *Salmonella* and *Campylobacter* shedding is still scarce and results are contradictory
- To date, no evaluation of the effects of different management systems on carcass contamination, nor measurement of the level of stress, have been investigated
- No data is available on Listeria monocytogenes contamination



## Thus, ....

- Could poultry welfare influence *Salmonella, Campylobacter* and *Listeria* shedding?
- Are there specific factors (either on-farm and preslaughtering) that significantly affect stress in poultry and have impact on faecal shedding of pathogens or carcass contamination?

#### Aim:

Identify and evaluate on-farm and pre-slaughtering stress factors that could influence shedding of food-borne pathogens in broilers

- Young researchers project funded by the Italian Ministry of Health
- Duration: 3 years (December 2014- December 2017)

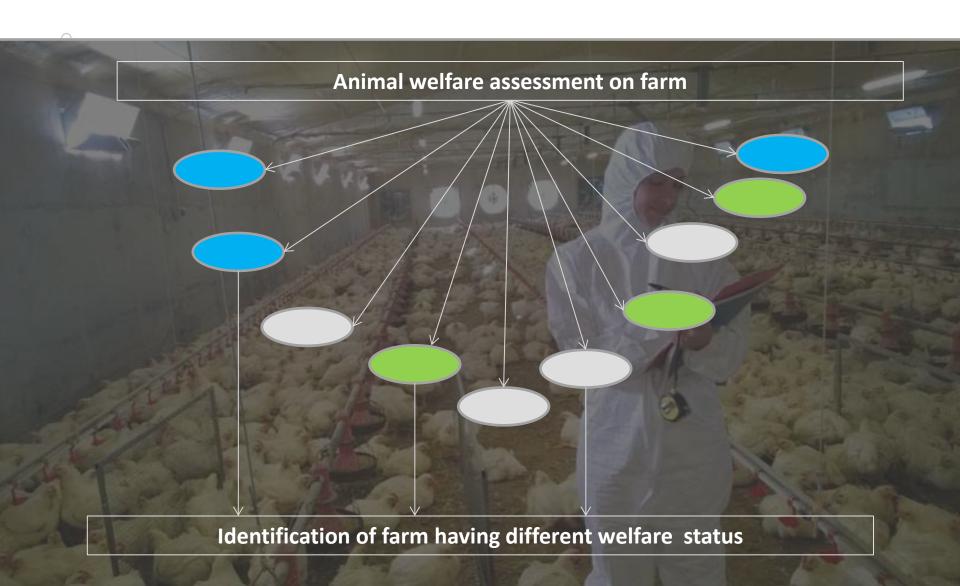




## Main phasese

• **Phase1** (farm): Screening and selection of farms with different AW levels

- **Phase2** (farm and slaughterhouse): AW assessment and evaluation of prevalence and carcass contamination by *Campylobacter, Salmonella* and *Listeria monocytogenes* at slaughterhouse.
- Phase3: Data analysis and identification of possible solutions to control contamination while improving animal welfare.










## Phase 1: Farm screening and selection





### **Welfare Quality® protocol**







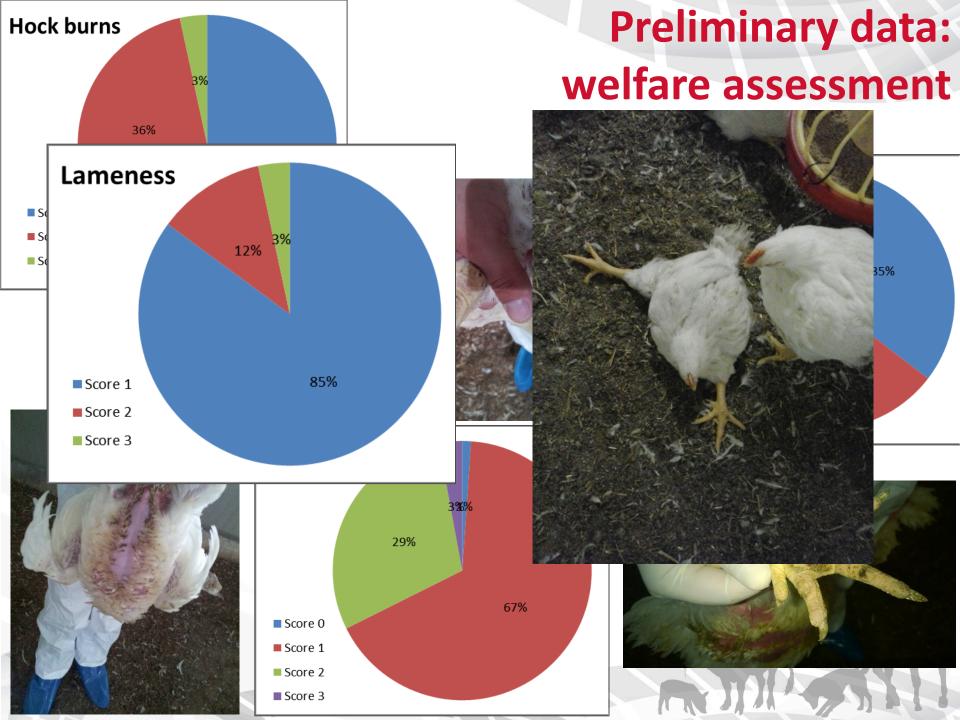


### On farm measures

| Principle                | Criteria                       | Measures                                             |
|--------------------------|--------------------------------|------------------------------------------------------|
| Good feeding             | Absence of prolonged thirst    | Drinker space                                        |
| Good housing             | Comfort around resting         | Plumage cleanliness, litter quality, dust sheet test |
|                          | Thermal comfort                | Panting, huddling                                    |
|                          | Ease of movements              | Stocking density                                     |
| Good health              | Absence of injuries            | Lameness, hock burn, food pat dermatitis             |
|                          | Absence of diseases            | On farm mortality, culls on farm                     |
| Appropriate<br>behaviour | Good human-animal relationship | Avoidance distance test                              |
|                          | Positive emotional state       | QBA                                                  |

## Preliminary data: welfare assessment

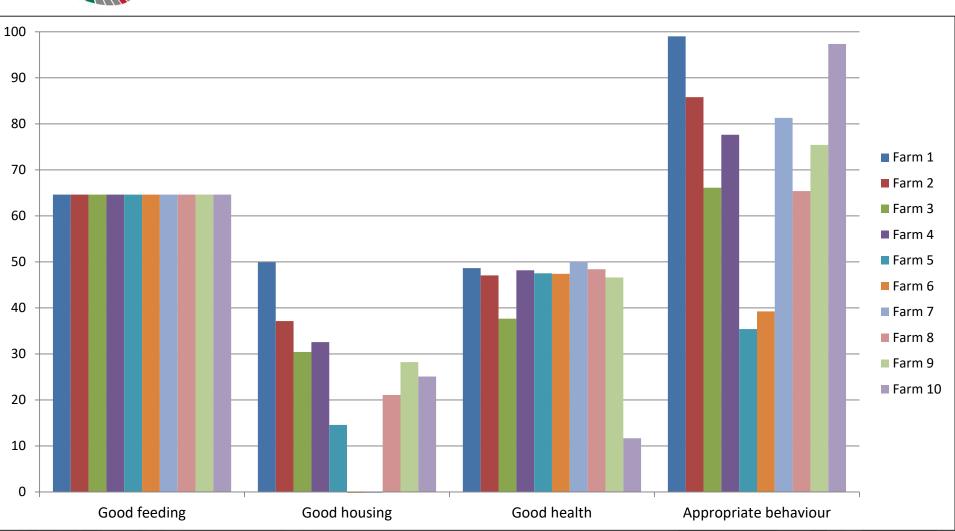
10 farms (Ross 308 and 708)


Average number of birds: 15,600.

Farm visits: 1-2 days prior to slaughtering (average age=49 days), average weight 2.9kg

Average mortality: 2.7% (1.6-5.5); average culling rate: 2.8% (1.7-3.9).

High variations of space allowance, with values ranging from 26.8 to 41 kg/m<sup>2</sup>.


Human-animal relationship was evaluated through touch tests: the mean prevalence of touched birds on the number of those being at arm reach was 53.4% (33-70).





## **Preliminary data:**

#### On farm welfare assessments



6 'Improved welfare'

2 'Acceptable'

2 'Non classified'



#### Phase 2:

### **Evaluation at slaughterhouse**

#### Three level of assessment:



- screening at 30d to confirm Campylobacter presence
- WQ (as in phase 1, day before slaughtering)

#### **Pre-slaughter**

- WQ (DOA, panting, pre-stun shock, etc..)
- Faecal sampling (pre-transportation)
- Faecal sampling (post-transportation)
- Blood sampling (eterophils / lymphocytes ratio)

#### Post-slaughter (carcasses)

- WQ (lesions, bruises, broken wings, ascites)
- Sampling of caeca
- Sampling of skin







# Preliminary data: food safety

First sampling (FARM 8) in farm and slaughterhouse on May 2016:

- Farm at 3 km from slaughterhouse (short transport)
- 'Improved welfare' WQ score
- Slaughtering on day 48
- Preliminary screening (day 30) at the farm to choose a Campylobacter positive batch

**Second sampling (FARM 10)** in farm and slaughterhouse on July 2016:

- Farm at 331 km from slaughterhouse (long transport)
- 'Improved welfare' WQ score
- Slaughtering on day 42
- Preliminary screening (day 30) at the farm to choose a **Campylobacter**positive batch



### **Preliminary data:**

### pathogens in cloacal swabs (shedding)

#### First sampling (FARM 8)

- Campylobacter spp. prevalence in cloacal swabs 60% before transport and 75% after transport
- Cloacal swabs negative to Salmonella and Listeria monocytogenes

#### Second sampling (FARM 10)

- Campylobacter spp. prevalence in cloacal swabs 25% before transport and 55% after transport
- Cloacal swabs negative to Salmonella and Listeria monocytogenes



## Preliminary data: pathogens in caeca

#### First sampling (FARM 8)

- Prevalence of Campylobacter spp. in caecal contents: 52.5% (21/40)
- Campylobacter coli sharply prevalent on Campylobacter jejuni
- Levels of contamination between 6.6 and 9.2 log10 UFC/g, mean 8.72 log10
   CFU/g
- Absence of Salmonella and Listeria monocytogenes

#### Second sampling (FARM 10)

- Prevalence of Campylobacter spp. in caecal contents: 97.5% (39/40)
- Info about *Campylobacter* species identification not yet available
- Levels of contamination between 5.6 and 9 log10 CFU/g, mean 8.63 log10
   CFU/g
- Absence of Salmonella and Listeria monocytogenes

# Preliminary data: | IZSAM G.CAPORALE TERAMO | Pathogens on carcass skin (final product)

#### First sampling (FARM 8)

- Prevalence of *Campylobacter spp.* on carcass skin after cooling: **85**% (34/40)
- Campylobacter coli slightly prevalent on Campylobacter jejuni
- Levels of contamination between 40 UFC/g and 25\*10^3 CFU/g (mean 2226 CFU/g)
- Absence of Salmonella
- Listeria monocytogenes detected in 3 samples out of 40 (7.5%). Environmental contamination or from other batches? Low levels of contamination

# Preliminary data: | IZSAM G.CAPORALE TERAMO | Preliminary data: | Dathogens on carcass skin (final product)

#### Second sampling (FARM 10)

- Prevalence of *Campylobacter spp.* on carcass skin after cooling: 100% (40/40)
- Info about Campylobacter species identification not yet available
- Levels of contamination between 82 UFC/g and 15\*10^3 CFU/g (mean 1833 CFU/g)
- Salmonella detected in 1 sample (2.5%, Salmonella typhimurium)
- Listeria monocytogenes just like in farm 8 detected in 3 samples out of 40 (7.5%). Environmental contamination or from other batches? Low levels of contamination

## Campylobacter spp. in carcass: comparison with national monitoring program

- Compared to the mean of samples analysed in the same slaughterhouse by the Campylobacter national monitoring programme in 2015, the mean level of contamination of *Campylobacter* on carcass skin was about 45% lower for farm 8 (2226 vs 3965 CFU/g) and about 53% lower for farm 10 (1833 vs 3965 CFU/g)
- More sampling sessions are scheduled by the end of 2017, in order to accurately compare the effect of different management systems:
- High WQ score vs low WQ score
- Farm far from the slaughterhouse vs farm close to the slaughterhouse
- Climatic conditions



## Some preliminary observations

- Long transport could influence prevalence of Campylobacter contamination of the final product
- Levels of carcass contamination seem to be mostly related to the caecal content levels (similar results in both batches)
- Caecal (and therefore carcass) contamination levels could be mostly related to «long-term» stress in farm, while changes in prevalence seem to be more sensible to «short-term» stress like long transport
- More sampling sessions are necessary to confirm these preliminary observations in order to perform statistical analyses
- The final results would help in supporting poultry farms with new tools for controlling food safety





## Thank you for your attention!





s.messori@izs.it

