

Performance of dairy cows offered silages produced from grass swards or red clover/grass swards

D. J Johnston^{1,2}, A.J Dale¹ N. E O'Connell², C. P Ferris¹

^{1:} Agri-Food and Biosciences Institute, Hillsborough
^{2:} Queen's University Belfast

www.afbini.gov.uk

Introduction (i)

- There is considerable interest in reducing reliance on imported protein feeds in livestock diets in the UK
 - Volatility of supply
 - Price fluctuations
 - GM issues
 - Carbon footprint?
- A number of forage protein crops can be successfully grown in the UK, yet only some are suited to the Northern Ireland climate

Introduction (ii)

- Red Clover has been identified as a forage crop that can be grown successfully under Northern Ireland conditions
 - 14.6t DM/ Ha over 4 year period (No added Nitrogen)
 - 18% crude protein (Dry matter basis)

- Can be grown in a pure sward, or in mixed swards with perennial ryegrass
- Potential to reduce Nitrogen fertiliser inputs?
- Potential to improve cow performance?

Objective of study

To examine the impact of offering silages (Harvests 1,2 &3) produced from perennial ryegrass based swards (PRG) or mixed perennial ryegrass/ red clover swards (PRG/RedC) on cow performance and nutrient utilisation

Methodology

Forage Production- Sowing

- Crops established autumn 2013
 - 4 strips of each crop sown, (3ha of each crop)
 - Pure PRG Sward (Var. Navan: 32.1kg seed/ha)
 - Mixed PRG/Red clover sward (Var. Navan: 22.2 kg seed/ha and Merviot: 9.9 kg seed/ha)

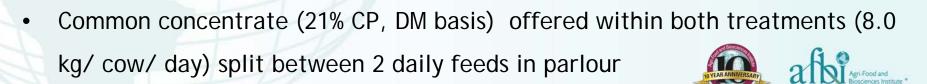
 Grass swards received 248kg N/ha in total across the season

Perennial Ryegrass

Perennial ryegrass/ Red Clover

Forage production (Harvesting)

- 3 Harvests taken during 2014
 - Harvest 1: 10th June
 - Harvest 2: 4th August
 - Harvest 3: 29th September
- Target DM at ensiling: 30%
- Ensiled in big bales



	Yield (t DM per Ha)			
	PRG	PRG/RedC		
Harvest 1	5.2	4.4		
Harvest 2	3.4	4.0		
Harvest 3	1.8	1.6		
Total Yield	10.4	9.9		

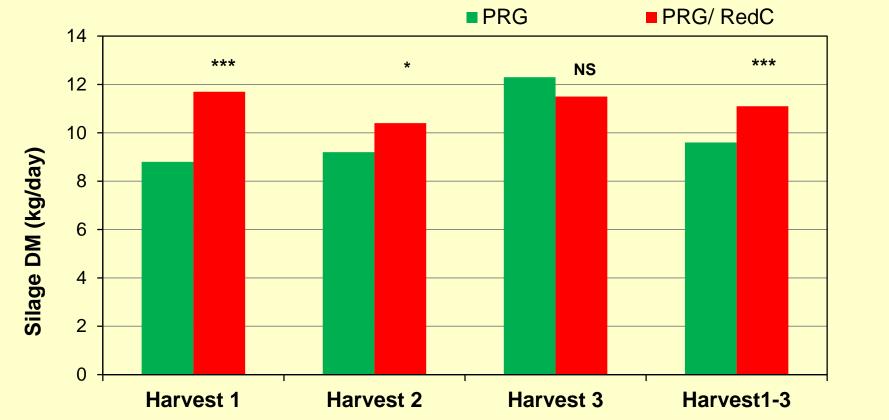
Feeding study

- 28 Crossbred dairy cows
- Silages from Harvests 1-3 fed consecutively
 - in a 13 week study;
 - H1= 5 weeks
 - H2= 5 weeks
 - H3= 3 weeks

Measurements

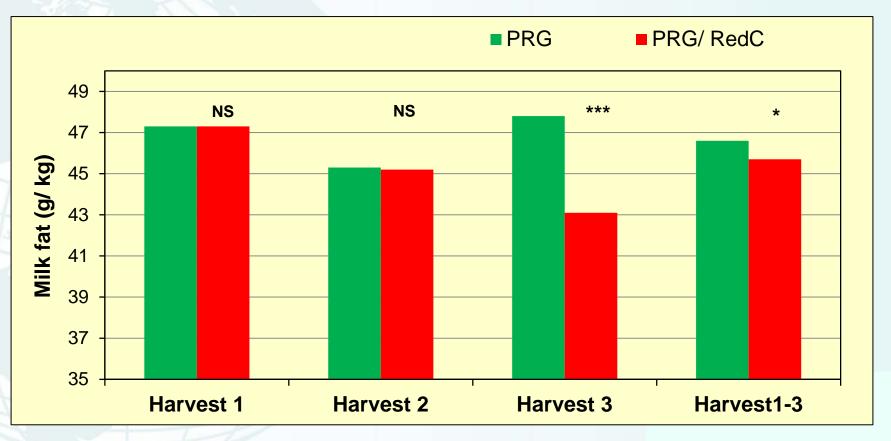
- DM intakes and milk yield (daily)
- Milk composition (weekly)

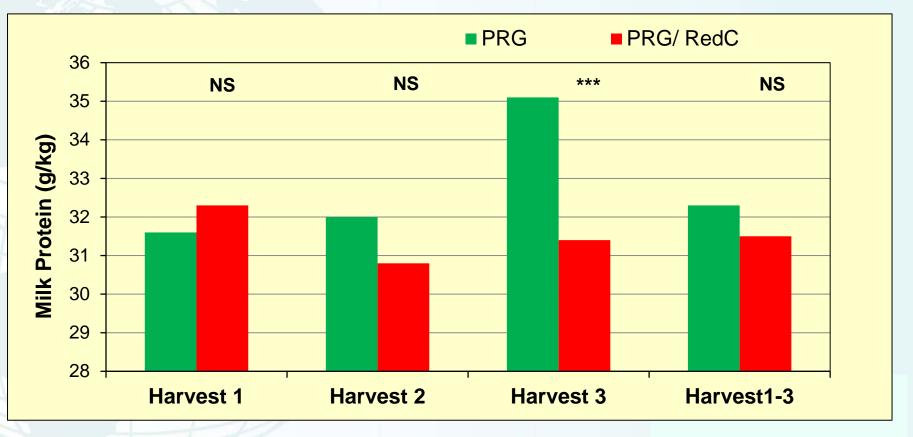
- Liveweight and BCS (start of study and end of study)
- Ration digestibility (4 cows per treatment at the end of each harvest)
- Data analysed using ANOVA using GenStat (16th Edition)


Results

Chemical composition of silages offered

	PRG silage	PRG/ RC silage
Harvest 1		
Dry matter (g/kg)	228	330
Crude Protein (g/kg DM)	121	103
рН	4.4	4.2
Harvest 2		
Dry matter (g/kg)	172	178
Crude Protein (g/kg DM)	143	176
рН	4.2	4.7
Harvest 3		
Dry matter (g/kg)	269	199
Crude Protein (g/kg DM)	146	230
рН	4.5	4.6


Effect of silage type on DM intakes (kg/cow/day)


Effect of silage type on Milk yield (kg/day)

Effect of silage type on Milk Fat (g/kg)

Effect of silage type on Milk Protein (g/kg)

Effect of silage type on milk fat + protein yield (kg/day)

Effect of silage type on end of study live weight and body condition score

Treatment	PRG	PRG/ RedC	S.E.M	P- Value
End of study live weight (kg)	569	559	5.8	NS
End of study body condition score	2.52	2.56	0.050	NS

Ration digestibility

Treatment	PRG	PRG/Red C	S.E.M	P_Value
Harvest 1				
Organic matter digestibility	0.73	0.65	0.011	0.001
Harvest 2				
Organic matter digestibility	0.77	0.73	0.007	0.004
Harvest 3				
Organic matter digestibility	0.78	0.74	0.026	0.007
Harvests 1-3 Organic matter digestibility	0.76	0.70	0.005	<0.001

Whole system effects

- There was a saving in fertiliser costs of £253/ha (248kg N/ha) with the PRG/RedC treatment.
- Using actual herbage yields and actual milk production data, and assuming equal in-silo losses of 15%, Milk solids output/ha was numerically lower with PRG/RedC calculated at:
- PRG silage = 2396 kg/ha
- PRG/RedC silage = 1940 kg/ha

Conclusion

- Intakes and milk yields were higher with PRG/RedC silage than the PRG silage
- Milk composition and end of study live weight and body condition score were unaffected by treatment
- PRG silages had a higher organic matter digestibility than PRG/RedC
- Higher milk solids/ha with PRG treatments
- Savings in N fertiliser £253/ha

Acknowledgements

 Staff from the Dairy Unit and Energy Metabolism Unit at Hillsborough

Staff from the Laboratory at Hillsborough

 Department of Agriculture, Environment and Rural Development, Northern Ireland (DAERA NI) and AgriSearch (NI) for funding

Thank you!

Any Questions please?

