

Creation of sheep divergent lines for gastro-intestinal parasitism resistance based on genomic information

C.R Moreno (INRA, Toulouse, France)

Context

- Gastro-Intestinal Nematode (GIN) infection is the major health problem for grazing sheep
- Anthelminthic resistance of parasites increases → inefficiency of chemical treatments

Use genetic selection?

- $H^2 \sim 0.3$
- High genetic correlations between resistance to different GIN strains
- Several QTL were detected:
 - ✓ 8 QTL regions: OAR 3,4,5,7,12,13,14,21
 - ✓ Creation of a 1000 SNP set in QTL regions

Which type of information we used to create divergente lines?

Genomic and/or pedigree evaluations for FEC1 and FEC2 2 EBV: pedigree, 50%pedigree+50%genomic

A two step selection to create the divergent lines

Distribution of log transformed FEC in the two divergente lines in generation 1

Is the observed divergence higher than excepted?

• Assuming: a normal distribution, h²=0.3,

• the expected response to selection: $R = i * h^2(\sigma_p)$

$X_R \longrightarrow 0$	$\stackrel{x_{S}}{\longleftrightarrow}$

Response to selection: (3%M+30%F)	Expressed in σ_P	Expressed in σ_{G}
Observed divergence in generation 1	1.0	3.5
Expected divergence after parent selection	0.8	2.5

The observed divergence is higher than expected perhaps because we performed another selection based on genomic prediction of offspring in generation 0 (pressure=25% inside families).

Does genomic evaluation improve the divergente selection?

No improvement of EBV predictions considering genomic (1,000 SNP) and pedigree information instead of pedigree only.

Soon, the creation of a second generation of divergent lines

To conclude

- A very efficient divergent selection for parasitism resistance was performed at INRA in Romane breed
- However using QTL markers information does not allow to have better EBV, because:
 - Small population sizes
 - Small QTL effects → polygenic determinism of parasite resistance
 - Small part of genome is genotyped by the 1000 SNP set
- Divergent Lines are useful :
 - To evaluate the impact of selection for parasitism resistance on other traits (behavior, growth, other diseases...)
 - To estimate tradeoff between biological functions (growth, reproduction, immunity...)
 - To observe the impact of host resistance on the parasite life cycle

Thanks

To P Jacquiet (Vet Scholl of Toulouse)

- To G Salle , A. Blanchard, C Koch, J Cortet
 (ISP in INRA of Tours)
- To S Aguerre (INRA of Toulouse, Genphyse lab)

THANKS FOR YOUR ATTENTION

Does genomic evaluation improve the divergente selection?

No improvement of EBV predictions to consider genotyping of 1,000 SNP and pedigree instead of pedigree only.

Is it a good idea to select for GIN resistance?

• Risk:

- Inefficiency of selection
- GIN parasites could be adapted to the resistant host
- Profit:

 Genetic selection is a long term solution particularly if it is associated to other strategies (anthelminthic, pasture rotation, nutrition)

How is performed our genomic/pedigree selection?

- A mixed model is used with a pedigree or/and genomic matrix
- Muller softwares was used to estimate marker effects
- blupf90 was used to perform genomic and/or pedigree evaluation

