

Mapping genomic regions associated with resistance to infectious diseases in Ethiopian indigenous chickens

A. <u>Psifidi</u>, G. Banos, O. Matika, T. Desta , J. Bettridge, D.A. Hume, D. Tadelle, R. Christley, P. Wigley, O. Hanotte, P. Kaiser

Background

- Poultry in Ethiopia:
 - Smallholder productive systems
 – backyard chickens
- Indigenous chickens:
 - well adapted
 - low productivity
 - infectious diseases
- Breeding programmes to improve productivity
- Is it also possible to select for enhanced resistance to infectious diseases?

More background -Objectives

PROSLIN

The major infectious diseases in Ethiopia:

- Fowl typhoid (Salmonella gallinarum, SG)
- Fowl cholera (Pasteurella multocida, PM)
- Infectious Bursal Disease (IBDV)
- Marek's Disease (MDV)
- Coccidiosis (Eimeria spp)
- Cestodes

To identify SNP markers associated with: enhanced immune response to SG, PM, IBDV, MDV and resistance to Eimeria and cestodes parasitism

Two populations of indigenous Ethiopian village chickens

384 chickens from Horro region

376 chickens from Jarso region

>800 km

Random sampling:

- 4 villages
- 50 farms
- 2 chickens

Phenotypes/Genotypes

For immune responses: serological data (ELISA)

antibody titres: SG, PM, IBDV, MDV

Parasitic resistance: oocysts counts (/gr of faeca)

Blood samples were collected using **FTA cards**

10 birds were re-sequenced (HiSeq, Illumina)

Analysis-GWAS

- Quality control (PLINK)
 - GENO 0.05, MAF 0.05, HWE 1x10⁻⁶
 - 414,134 SNP markers remained
- Principal component analysis (GenABEL)
 - The two populations are genetically distinct

Analysis-GWAS

Association analysis (GEMMA)

- Mixed model accounted for:
 - Genetic relationship matrix
 - population
 - village
 - collection date
 - sex
 - ELISA plate-to-plate variation
 - age
 - weight
- Multi-testing
 - Bonferroni correction
 - p < 0.05,
- Suggestive genome-wide, chromosome-wide significant

Manhattan and QQ Plots- SG,PM

Manhattan and Q-Q Plots- IBDV, MDV

Observed - log₁₀(p)

Manhattan and QQ Plots-Eimeria, cestodes

- Mixed model analysis in ASReml
 - Validation of the significant markers
 - Most markers had a significant additive effects
 - Few had a significant dominance effects

- Moderate to high heritability estimates (ASReml):
 - Using Kinship matrix

Trait	Heritability estimate(h²)
Salmonella	0.08
Pasteurella	0.30
IBDV	0.46
MDV	0.42
Eimeria	0.22
Cestodes	0.31

- Average reliability of GEBVs:
 - for IBDV and MDV ~0.40
 - for PM and cestodes ~0.30
 - for *Eimeria* = 0.20 while for SG=0.08

IBDV

MDV

- To estimate the accuracy of genomic predictions :
 - Cross-validation study-subdividing the data into 5 sets
 - Across ecotypes
 - Within ecotypes
 - GBLUP (ASReml)
- For IBDV accuracy ~0.40
- For MDV accuracy~0.42
- For *Eimeria* accuracy~0.30

Re-sequencing data-work in progress

PCA analysis for PM (R/Bioconductor package/SNP relate)

Red dots- low antibody Blue dots-high antibody titres

Conclusions

- Horro and Jarso chickens are two distinct populations but they share common genomic regions of disease resistance
- SNP markers significantly associated with each of the studied infectious diseases were identified.
- The heritability of the traits were moderate with the exception of SG
- The reliability of the estimated GEBVs and the accuracy of the genomic predictions were encouraging for breeding for enhanced resistance to infectious diseases in indigenous Ethiopian chickens
- Across indigenous ecotypes breeding programmes may be plausible

Acknowledgements – CH4D

Department for International Development

