

Genetic parameters for longitudinal welfare and disease indicator traits generated in automatic milking systems

L. V. Santos. K. Brügemann. and S. König

Institute of Animal Breeding and Genetics, University of Gießen, Germany

Source: Google Image

31.08.2016

- Future breeding strategies will focus on novel functional traits:
 - Health traits
 - Behavior traits
 - Welfare traits
- Challenges:
 - Functional traits generally show low heritability and are difficult or expensive to measure
 - Behavior traits are mainly measured subjectively
 - E.g. milking temperament (1:very nervous; 5: very calm)
- Adoption of new technologies is accelerating ' AMS

JUSTUS-LIEBIG-

Number of AMS in Germany

Laura V. Santos • Animal Breeding • EAAP 2016, Belfast

- Automatic repeated measures, longitudinal data and objective data recording
 - Recording and storing of technical parameters for every individual milking visit
 - E.g. milking speed, milking duration, knock-off of the milking device, electrical conductivity
- Technical parameters can be used to define new behavior- and milking efficiency traits, e.g.:
 - Temperament
 - Health

Source: Landwirt.com

- 1. To identify and define **novel functional milking traits** reflecting the categories
 - Temperament
 - Health

based on data collected in automatic milking systems

- 2. To infer genetic relationships
 - Among those novel traits
 - With traits from official milk performance testing
- 3. In order to develop more balanced breeding strategies with higher emphasis on animal welfare

- 3 farms with the same AMS producer
 - Each farm had an average of 350 animals
- In total 884 animal records and 58.664 observations in a 30 days period
 - AMS observations
- Official test-day-records
 - Close to the 30 days we extracted from the AMS
- Fertility records for 765 cows
- Pedigree with 20.866 animals

Novel trait definitions

Trait (structure)	Definition	Indicator
AMF (Gauß)	average milk flow	temperament
CON (Gauß)	electrical conductivity	udder health
DUR (Gauß)	time spent during a visit in the milking machine	stress, temperament
INT (Gauß)	interval between two consecutive milkings	social dominance, temperament
VIS3 (binary)	more than 3 visits a day	social dominance,
VIS2 (binary)	more than 2 visits a day	curiosity, temperament
KO (binary)	at least one of the milking devices is knocked off	general discomfort, temperament
NRR90 (binary)	non return rate 90	fertility
JUSTUS-LIEBIG-		

Descriptive statistics

	Statistical parameters				
Traits/Effects	Mean	SD	Minimum	Maximum	
MY (kg)	12.85	4.41	1.53	30.29	
AMF (kg/min)	1.12	0.30	0.30	2.07	
CON (mS/cm)	4.95	0.41	3.91	6.30	
SCS	2.72	1.64	0.16	8.68	
DUR (min)	6.43	2.00	1.02	31.68	
INT (h)	9.22	3.00	0.00	24.00	
VIS3	0.23	0.42	0	1	
VIS2	0.60	0.49	0	1	
KO	0.08	0.28	0	1	
NRR90	0.25	0.43	0	1	

JUSTUS-LIEBIG-

Laura V. Santos • Animal Breeding • EAAP 2016, Belfast

• For traits AMF, INT, CON and DUR

 $y_{ijklmnopq} = \mu + Robot_i + LN_j + Date_k + Intcl_l + DIM_m + ToD_n + CA_o + pe_p + a_q + e_{ijklmnopq} (I)$

- μ = Population mean
- Robot = AMS consecutively numbered across herds
- LN = Lactation number 1 5
- Date = Day the cow entries the AMS
- Intcl = Interval in classes < 8 h = 1; 8 h 10 h = 2; > 10 h = 3 not for INT
- DIM = According to Huth 1995
- ToD = Time of day in classes 10 p.m. 4 a.m. = 1; 4 a.m. 10 a.m. = 2; 10 a.m. - 4 p.m. = 3; 4 p.m. - 10 p.m. = 4
- CA = Calving age (linear regression)
- pe = Permanent environmental effect
- a = Additive genetic effect; e = Residual effect

JUSTUS-LIEBIG-

NIVERSITÄT

• For VIS3, VIS2 and KO

 $U_{ijklmnopq} = \varphi + Robot_i + LN_j + Date_k + Intcl_l + DIM_m + ToD_n + CA_o + pe_p + a_q (II)$

- For VIS3 and VIS2 the effects Intcl and ToD were not significant and excluded from the model
- For **NRR90**

 $u_{ijklmnopq} = \varphi + Herd_i + Season_j + LN_k + DIM_l + C-S_m + a_n$ (III)

- Herd = The three herds
- Season = Conception season in classes; March May = 1; June August = 2; September – November = 3; December – February = 4
- C-S = Interval from calving to first service

Variance components and heritabilities for traits of interest

Traits	σ_a^2	$\sigma_{pe}{}^{2}$	σ_e^2	h² ± SE	W ²
AMF (kg/min)	0.09	0.13	0.13	0.25 ± 0.07	0.63
DUR (min)	0.57	1.28	1.23	0.19 ± 0.07	0.60
INT (hour)	0.42	1.44	4.15	0.07 ± 0.03	0.31
KO	0.17	1.44	3.29	0.03 ± 0.03	0.33
VIS3	0.38	1.11	3.29	0.08 ± 0.03	0.31
VIS2	0.30	2.01	3.29	0.05 ± 0.05	0.41
MY (kg)	1.62	3.49	4.13	0.18 ± 0.06	0.55
CON (mS/cm)	0.07	0.03	0.03	0.53 ± 0.09	0.77

JUSTUS-LIEBIG-

Correlations

Trait	AMF	DUR	INT	KO	VIS3	VIS2	MY
AMF		-0.88 (0.08	0.14 (0.23)	0.17 (0.40	-0.24 (0.23)	-0.20 (0.34)	0.40 (0.19)
DUR	-0.631		-0.15 (0.28)	-0.25 (0.47	0.28 (0.27)	0.37 (0.38)	0.87 (0.35)
INT	0.017	-0.088		-0.19 (0.47	7) -0.62 (0.19)	-0.88 (0.22)	-0.51 (0.23)
KO	-0.018	0.057	-0.129		0.24 (0.47)	0.55 (0.79)	0.21 (0.42)
VIS3	-0.001	0.107	-0.963	0.127		n.c.	0.49 (0.23)
VIS2	-0.003	0.124	-0.855	0.209	0.842		0.81 (0.30)
MY	0.473	0.251	-0.524	0.053	0.522	0.471	
JUSTUS-LIEBIG- n.c. = not conver					converged		
	UNIVERSITÄ GIESSEN	Т L	aura V. Santos • Ani	imal Breeding • E	AAP 2016, Belfast		12

- AMS provides a large amount of objectively measured data
- Utilization of this data as health and behavior indicators for livestock is still largely unrealized
- CON as a new indicator for udder health; higher heritability as SCS (heritability between CON and SCS = 0.21 œ0.10)
- Moderate heritabilities for AMF (0.25 \pm 0.07) and DUR (0.19 \pm 0.07)
- Breeding value for AMS already exists (RZRobot)
- Consideration to add some of these behavior traits to RZRobot in order to breed for a favorable temperament and for cows more suitable to AMS

67th Annual Meeting of the European Federation of Animal Science, Belfast UK. 29 Aug – 2 Sept 2016

Thank you very much for your attention!

Source: Google Image

Acknowledgment: Project funding is made within the LOEWE focus of the Hessian Ministry for Science and Art

