

Institute of Agricultural and Nutritional Sciences, University of Halle, Germany

Estimating heritabilities for fertility disorders using on farm recorded health data

V. Müller-Rätz¹, K.F. Stock², R. Schafberg¹, H.H. Swalve¹

1 Institute of Agricultural and Nutritional Sciences, University of Halle, 06102 Halle, Germany

2 Vereinigte Informationssysteme Tierhaltung w.V., Heinrich-Schröder-Weg 1, 27283 Verden / Aller, Germany

EAAP 2016

67th Annual Meeting of the European Federation of Animal Science

Belfast UK, 29 Aug 2016, Session 12

The objective of my work

- evaluation of on farm recorded health data and definition of traits for fertility disorders
- estimating variance components, heritability's and breeding values for the whole lactation, using single trait animal models
- consider the lactation in parts and fit random regression models for estimation
- calculate phenotypic and genetic correlations between parts

data, data editing and trait definition

- raw data: 741,776 diagnoses from 01/01/2013 until 15/11/2015
 - 77,040 animals in 145 farms
- edited data: 24,593 lactations (20,534 animals)
 - -9,605 cows in 1st, 14,988 cows in 2nd and 3rd lactation
 - average of 647 lactations per herd (38)
 - calvings in 8 seasons
 - 553 sires
- calculation of incidence rates (inc) and number of new cases (nonc) per lactation for fertility disorders:
 - fertility disorders in general (GD) inc= 42.28%
 - sterility diagnoses (SD) inc= 34.01%
 - disorders observed post-partum (DPP) inc= 16.49%

models for overall lactation

- fixed effects with a significant effect on the traits were evaluated using the glimmix and the mixed procedure in SAS
- adding the additive genetic effect of the animal and a random effect for the permanent environment of the animal, in ASReml

```
y = Xb + Z1a + Z2pe + e [+lin(DIM)]
```

```
with:
```

```
a = genetic effect (random);
y = phenotypic observations;
X = matrix of fixed effects;
                                                  pe = permanent environment (random);
b = vector of fixed effects;
                                                  e = random error term;
Z1 and Z2 = matrix for the random effect
                                                  lin(DIM) = linear regression of days in milk,
            a (add.-gen.) und pe (permanent
                                                             only for nonc
            environment);
```

h² from models for overall lactation

troit	model					
trait	inc (bin)	inc (lin)	nonc			
FD	0.041 (0.012)	X	0.034 (0.008)			
SD	0.041 (0.013)	0.018 (0.006)	0.027 (0.007)			
DPP	0.066 (0.014)	0.026 (0.007)	0.021 (0.006)			

(standard error)

random regression - data and trait editing

- using the already selected 24,593 lactations
 - splitting up every lactation into 15 equal parts (368,895 records)
 - programing incidence for every part and disorder
- apply local regression to inspect parts of interest for all fertility disorder traits
 - herds with at least 1 diagnosis in every considered part
- FD: part $1 15 \rightarrow 22$ herds, 237,645 records
- SD: part $1 10 \rightarrow 26$ herds, 167,230 records
- DPP: part $1-5 \rightarrow 3$ herds, 26,145 records

random regression - models

Model:
$$y_{ijk} = \mu + 1a_i + \sum_{k+1}^{4} h_j \cdot x_k + a_{0n} + a_{1n} \cdot x_1 + a_{2n} \cdot x_2 + pu_{0n} + pu_{1n} \cdot x_1 + e_{ijkn}$$

y = vector of phenotypic observations

 μ = population average

la_i = fixed effect for i-th lactation

h_i = fixed effect for j-th herd

 X_k , X_1 ... X_4 = Ali & Schäfer polynomials as regression coefficient for covariable

 $a_{1,2n}$ and pe_{1n} = regression coefficient for the random effect a (add.–

gen.) und pe (permanent environment) for n-th animal,

 e_{ijkn} = residual term

random regression — heritabilities, phenotypic and genetic correlations for DPP

heritabilities, phenotypic and genetic correlations for DPP

part	1	2	3	4	5	
1	0.871	0.764	0.473	0.080	-0.076	
2	1.000	0.670	0.415	0.070	-0.067	
3	1.000	1.000	0.257	0.044	-0.041	
4	1.000	1.000	1.000	0.007	-0.007	
5	-1.000	-1.000	-1.000	-1.000	0.006	

random regression — heritabilities, phenotypic and genetic correlations for SD

random regression — heritabilities, phenotypic and genetic correlations for SD

part	1	2	3	4	5	6	7	8	9	10
1	0.131	0.384	0.297	0.227	0.184	0.168	0.177	0.212	0.275	0.358
2	0.729	0.016	0.369	0.343	0.324	0.316	0.319	0.334	0.357	0.377
3	-0.680	0.006	0.041	0.417	0.418	0.417	0.416	0.413	0.402	0.369
4	-0.847	-0.252	0.966	0.118	0.469	0.472	0.469	0.454	0.421	0.352
5	-0.887	-0.330	0.942	0.997	0.180	0.498	0.493	0.472	0.426	0.339
6	-0.904	-0.366	0.928	0.993	0.999	0.204	0.500	0.478	0.427	0.334
7	-0.912	-0.387	0.919	0.989	0.998	1.000	0.186	0.474	0.427	0.338
8	-0.915	-0.398	0.911	0.985	0.995	0.998	0.999	0.128	0.423	0.352
9	-0.900	-0.396	0.892	0.966	0.978	0.982	0.986	0.992	0.047	0.370
10	0.198	0.113	-0.160	-0.178	-0.175	-0.165	-0.146	-0.107	0.016	0.004

random regression — heritabilities for FD

models for overall lactationrandom regression models, comparison

	heritability from model						
trait	whole lactation	random regression	random regression (selected h²)				
	(inc bin)	(means)					
FD	0.041 (0.012)	0.133 (0.103)	0.031 (part 4)				
SD	0.041 (0.013)	0.106 (0.074)	0.016 (part 2)				
DPP	0.066 (0.014)	0.362 (0.393)	X				
			(standard error)				

conclusion and outlook

- heritabilities for fertility disorders from models for the whole lactation are in same range as in the literature
- estimates from random regression models for selected parts of the lactation seem to be higher
- correlations indicate that there are differences in traits for fertility disorders over the lactation
- traits should be defined as specific as possible
- results from random regression animal models demand a cautious interpretation
- confirm the results on a bigger data set

Institute of Agricultural and Nutritional Sciences, University of Halle, Germany

Thank you for your attention!

The project is supported by funds of the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support program.