

# Economic values for lean meatand fat efficiency in the Norwegian Landrace nucleus pig population

#### K. H. Martinsen<sup>1</sup>, J. Ødegård<sup>2</sup>, D. Olsen<sup>3</sup> and T. H. E. Meuwissen<sup>1</sup>

<sup>1</sup> Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway. <sup>2</sup> AquaGen AS, P.O. Box 1240 Sluppen, NO-7462 Trondheim, Norway.<sup>3</sup> Topigs Norsvin, P.O. Box 504, NO-2304 Hamar, Norway.



# BACKGROUND

- Human population growth:
  - Demands increased food production
  - High competition for feed resources



Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat (2007)

- Economy in pork production
- Important goal for future genetic improvements in animal breeding.



# New feed efficiency measure

- Developed a new measure for feed efficiency
- Random regression of lean meat and fat content assessed by CT
  - Fat efficiency, feed/kg fat
  - Lean meat efficiency, feed/kg lean meat





# **GENETIC PARAMETERS**

- Genetic variation existed
- Few unfavorable correlations to important sow traits
  - Stayability in sows and fat efficiency
  - Total litter weight at three weeks and fat efficiency





# Objective

Calculate economic values for lean meat efficiency and fat efficiency in Norwegian Landrace.





# Economic model

- A simple economic model
  - Performance level was set to the production mean from the test station.
  - Estimated production and profit per fattening pig



### **Traits**

- Days from 40 to 120 kg live weight
- Lean meat efficiency
- Fat efficiency
- Lean meat percentage
- Fat content of the carcass
- Total feed intake in the test period (40-120 kg)



# **Profit function**

• Profit (P) = income – costs

• Income:





# **Profit function**

- Costs:
  - 1. Feed (efficiency measurements were used)
  - 2. Labor
  - 3. Buildings/machines
  - 4. Fixed costs



Photo: Felleskjøpet Rogaland Agder



### **Economic values**

Marginal economic value<sub>n</sub>(MEV) =  $\frac{P(\mu_n + \Delta n) - P(\mu_n)}{\Delta n}$ 

For trait n, the marginal economic value was the change in profit when trait n was improved by 1% divided by the change in the trait (• n).

To compare the economic values across traits, they were expressed per genetic standard deviation ( $\tilde{A}_{a})$ 

Standardized EV = MEV  $\times \sigma_a$ 





### Results

| TRAIT                                      | MEV(€) | σ <sub>a</sub> | SEV( <b>€</b> σ <sub>a</sub> ) |
|--------------------------------------------|--------|----------------|--------------------------------|
| Total feed intake in the test(kg)          | 0.3    | 4.7            | 1.6                            |
| Lean meat efficiency (kg feed/kg lean meat | 18.3   | 0.5            | 8.9                            |
| Fat efficiency (kg feed/kg fat)            | 5.6    | 0.5            | 2.9                            |
| Days in the test (days)                    | 0.9    | 2.8            | 2.6                            |
| Lean meat percentage                       | 2.5    | 1.8            | 4.5                            |
| Fat content carcass (kg)                   | 0.8    | 1.4            | 1.1                            |



# Indexes and breeding goals

 $Index_{ij} = \sum MEV_i \times EBV_{ij}$ 

Breeding goal A

- Lean meat- and fat efficiency for estimating feed consumption
- $\tilde{A}_i = 54.9$

#### Breeding goal B

- Total feed intake in the test period as feed consumption trait
- $\tilde{A}_i = 32.6$

**PROFIT**<sub>j</sub> =  $\sum MEV_i \times phenotype_{ij}$ 

#### EBV's for PROFIT

• Economically weighted phenotype including the traits in breeding goal B

• 
$$\tilde{A}_{EBVprofit} = 23.2$$

Rank correlation between the indexes = 0.77



# Conclusions

- Lean meat and fat efficiency had high economic importance in pork production
- There was larger variation in the index including the new traits compared to the traditional trait.
- Low rank correlation between the indexes suggested that the two efficiency traits contribute with additional information to the genetic evaluation in boars.



# Acknowledgements

- Topigs Norsvin
- Supervisors: Dan Olsen, Jørgen Ødegård and Theo Meuwissen

