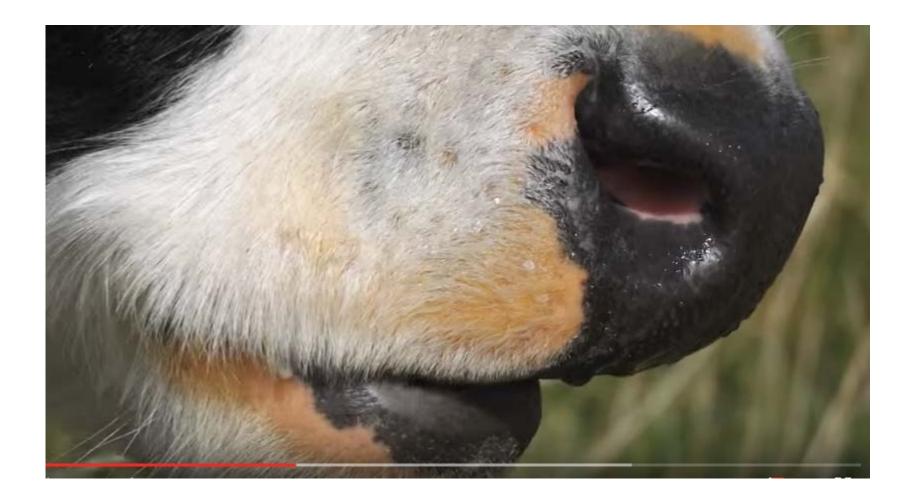
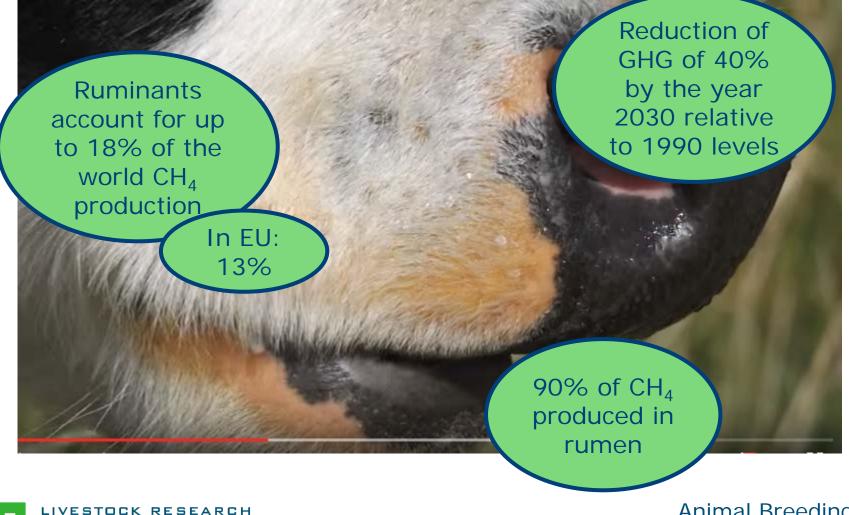
Genetic and genomic analyses of enteric methane emissions of dairy cattle

Yvette de Haas, Jennie Pryce, Eileen Wall, Sinead McParland, Gareth Difford, Jan Lassen

Acknowledgements




This is what we want a cow to do ... (4 to 9 hours/day - Hafez & Bouissou, 1975)

... but what also causes problems

WAGENINGEN UR

Mitigation options

Animal nutrition

- Ration
- Additives (3NOP)
- Microbiology
 - Microbial population a host in a host!

New!

- Animal breeding
 - Cost-effective
 - Permanent and cu

hanges in performance

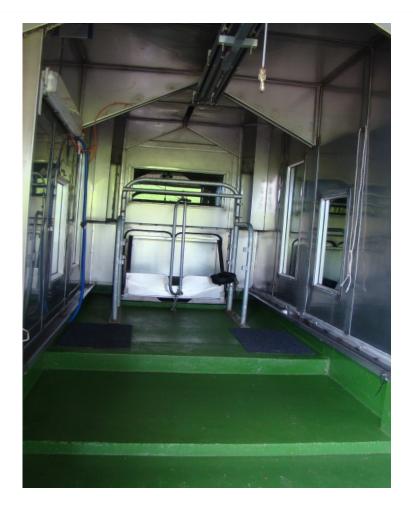
Animal breeding at mitigation tool

- Breeding goal
- Phenotype
- Genetic parameters
- Genetic markers

Breeding goal

What is it that we want to decrease?

- 1. The overall emission?
 - methane production in g/d
- 2. The intensity?
 - methane prod per kg of output; e.g. milk/meat
- 3. The yield?
 - Methane prod per kg of input; e.g. DMI



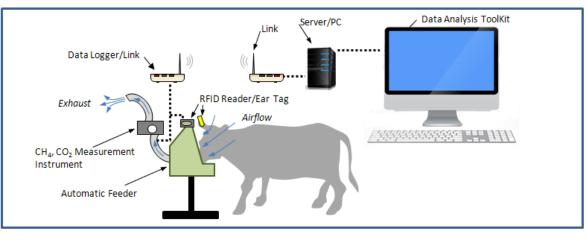
Phenotype

What is the best suitable phenotype related to the breeding goal?

- Intrusiveness
- Costs
- Labour
- Throughput

Respiration chamber Gold standard!

Head hoods



 SF_6

Laser

GreenFeeder

Butter boxes

Genetic parameters & Genetic markers

 Example in beef
Coralia's talk, 15.15h

Example in dairy

Genomic selection for CH₄ in dairy

De Haas et al. (2016) *Combining methane traits in dairy cattle from multiple sources for genetic evaluations*. In prep for Journal of Dairy Science

Multiple sources

Available data - Australia

- DEDJTR farm: Ellinbank
- 354 cows
- SF₆ methane phenotypes over 3 days
 - 2013, 2014, 2015
- Genotyped with 50k chip, imputed to HD (338 animals)

Available data - Denmark

1769 Danish Holsteins • 374 Sires; 1306 Dams Sniffer methane records • CH₄ and CO₂ concentration 11 Herds; each visited 1 week 2012 & 2013 56k Genotyped 1758 animals

Available data - Ireland

352 cows

- 4,360 records
- 2009, 2010, 2011
- Holstein, Jersey, crossbreds
- SF₆ methane records; 5 consecutive 24h periods
- 64 animals genotyped
 - Illumina 50k v01
 - Custom chip with 16k SNPs

Available data - Netherlands

- 460 cows at Dairy Campus
 - 12,088 weekly records
 - 2013-2014-2015

- 452 are genotyped
 - Eurogenomics 10k chip imputed to CRV custom chip (76k SNPs)

Available data - UK

216 cows

- Laser methane detector
- Recording every 0.5 sec over c. 5 minutes
- 2 x 2 factorial analysis
 - => Langhill data (genetic line, ration)
- 192 are genotyped (50k Illumina v01 and v02)

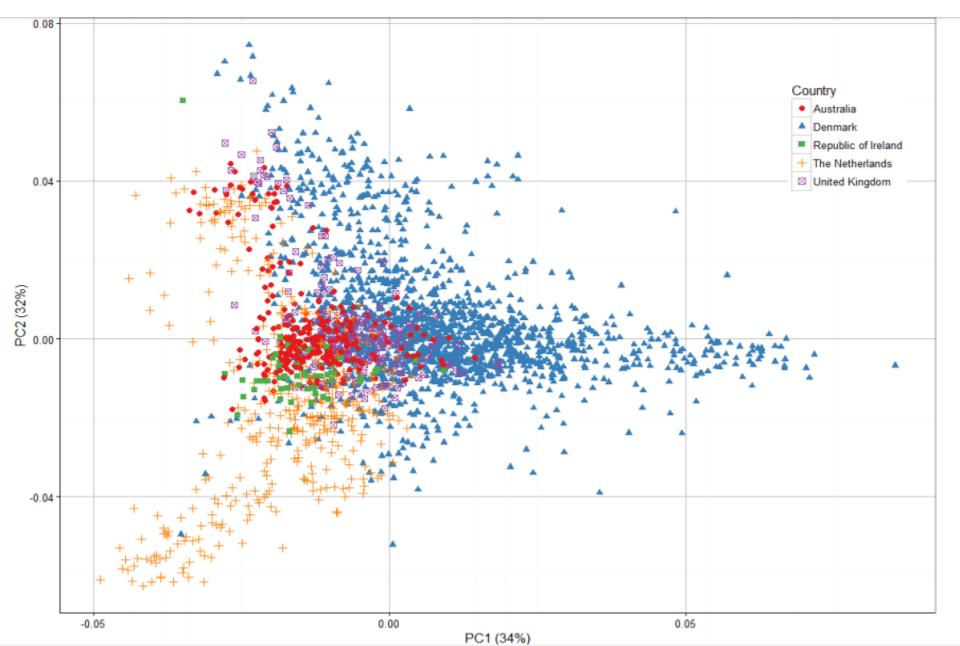
Methane traits

Selected phenotypes (weekly averages)

- Methane production = g/d
- Methane intensity = g/kg FPCM
- Methane concentration = ppm
- Standardized within country
 - Correcting for differences in variance between countries
 - Mean of 0, std. dev of 1

Methane traits - no. animals

	No. of animals		
Trait	Original	Edited	Genotyped
CH ₄ (g/d)	3,151	2,857	2,543
CH ₄ intensity	3,151	2,857	2,543
CH ₄ concentration	2,445	2,290	2,192
$CH_4 : CO_2$	2,229	2,088	2,014


Relationship matrices

Pedigree

- Traced back to founder populations
- Using Interbull ID to remove aliases
- 28,317 animals
- Genomic
 - Combining genotypes of all countries on matching SNP names
 - Imputing = > 45,873 SNPs
 - Quality control => 44,936 SNPs

WAGENINGEN UR

Principal components GRM

Descriptive statistics – overall

	Mean	Min	Max	$\sigma_{\rm p}$
CH₄ g∕d	540.6	150.4	999.5	117.9
CH ₄ int.	17.6	3.2	74.5	5.1
CH ₄ ppm	321.0	17.0	909.7	125.8
Ratio	0.08	0.01	0.18	0.017
FPCM	32.2	9.2	63.1	7.6
LW	606.4	358.0	928.9	71.1

Descriptive statistics – per country

	Mean	Min	Max	$\sigma_{\rm p}$
CH_4 prod	CH ₄ production			
AUS	450.7	230.8	753.8	78.3
DK	554.2	443.1	820.3	50.1
IRL	357.5	176.2	651.0	91.2
NL	549.9	150.4	999.5	119.1
UK	323.6	158.1	523.5	61.6
CH ₄ inter	CH ₄ intensity			
AUS	21.5	8.2	74.5	11.7
DK	13.6	8.6	27.5	2.7
IRL	18.7	7.6	45.3	5.9
NL	18.2	3.2	59.3	4.7
UK	13.1	6.3	37.5	4.4

Animal Breeding & **Genomics** Centre

WAGENINGEN UR

Overall heritabilities

	Pedigree	GRM
CH₄ g∕d	0.07 (0.03)	0.04 (0.02)
CH ₄ int.	0.21 (0.05)	0.11 (0.03)
CH ₄ ppm	0.16 (0.05)	0.07 (0.03)
Ratio	0.09 (0.04)	0.04 (0.02)
FPCM	0.41 (0.05)	0.26 (0.03)
LW	0.57 (0.05)	0.35 (0.03)

Country-specific heritabilities

	Pedigree	GRM	
CH ₄ production			
AUS	0.00 (0.15)	0.05 (0.14)	
DK	0.05 (0.04)	0.05 (0.03)	
IRL	0.14 (0.18)	N.E.	
NL	0.09 (0.09)	0.04 (0.07)	
UK	0.12 (0.17)	0.15 (0.17)	
CH ₄ intensity			
AUS	0.17 (0.17)	0.23 (0.15)	
DK	0.29 (0.07)	0.14 (0.04)	
IRL	0.16 (0.24)	N.E.	
NL	0.09 (0.10)	0.05 (0.08)	
UK	0.34 (0.23)	0.18 (0.21)	

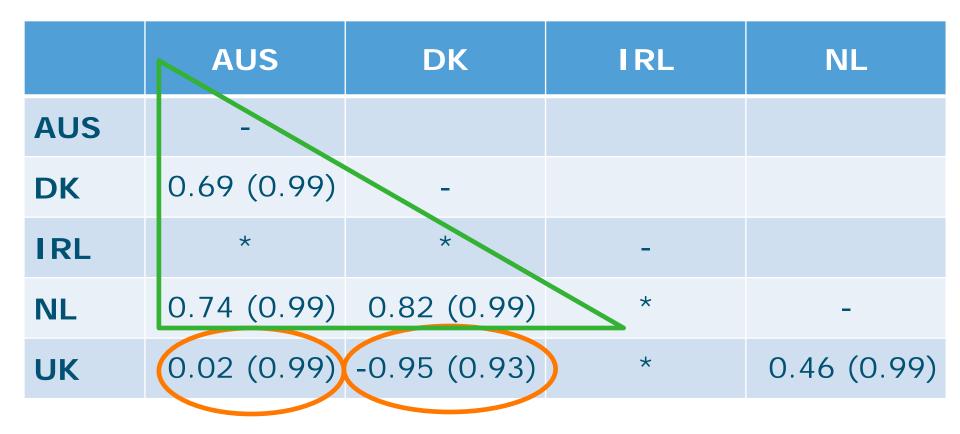
Animal Breeding & Genomics Centre

WAGENINGEN UR

Correlations with milk and live weight

	CH ₄ (g/d)	CH ₄ intensity		
Pedigree relationship matrix				
FPCM	0.90 (0.22)	-0.87 (0.06)		
LW	0.63 (0.19)	-0.21 (0.12)		
Genomic relationship matrix				
FPCM	0.86 (0.20)	-0.86 (0.07)		
LW	0.79 (0.22)	-0.15 (0.12)		

Correlations between countries


"Countries"

- Different equipment
- Different protocol
- Different production system
- Different ration
- Different genetic strain
- Different!

=> Now it gets interesting ... But so hard to get done!

Correlations (Rg) between "countries" *methane production (g/d)*

Next steps

- 1. Run analyses with H-matrix
 - Include mainly the Irish animals
- 2. Update model
 - Currently overparametizing?
- 3. Phenotype definition
 - Take the original record, independent on unit
 - Apples *versus* Pears?
- 4. Genomic prediction for enteric methane
- 5. Link methane to feed efficiency
- 6. Proxies for methane, e.g., MIR profiles in milk

Conclusions

The (preliminary!) results show that

- Genetic variation in methane of dairy exists
- Heritability slightly lower than published recently
- Mainly positive genetic correlations between "countries", large standard errors
- GRM is more accurate at detecting relationships among animals in some countries

Seems feasible to collate methane data on larger scale

- G x E should be accounted for
- Trait definition needs attention

Yvette.deHaas@wur.nl

