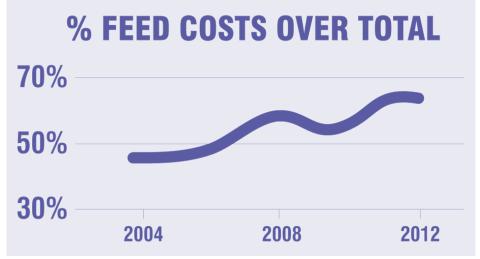

Feed efficiency and methane emissions in dairy cattle: Overview of the current recording


Adrien Butty¹, A. Wilson¹, C. Richardson¹, F. Miglior^{1,2}, C. Baes¹

¹CGIL - University of Guelph; ²Canadian Dairy Network, Guelph, Ontario, Canada

Feed efficiency (FE) & Methane Emissions (ME)

- Continuous growth in demand for high quality milk protein (+238% in Asia in last 30 years)
- Increasing awareness of environmental impact from dairying
- Rising dairy farm input costs where feed represents more than 50% of operation costs

Why only now?

Feed efficiency & methane emissions are two traits difficult to measure

use of genomics makes accurate estimation of breeding values for these traits possible!

ICAR Feed & Gas Working Group

Working Group within the International Committee for Animal Recording

Gather people from 8 countries

Benoit Rouillé (F) Nina Krattenmacher (D)

Raffaella Finocchiaro (I) Jan Lassen (DK)

Phil Garnsworthy (UK) Filippo Miglior (CA)

Birgit Gredler (CH) Jennie Pryce (AU)

• Aims to:

- create an overview of the current data status for FE & ME
- facilitate the standardization of recording DMI & CH₄
- enhance international collaboration, technically and methodologically

ICAR Feed & Gas Working Group

Working Group within the International Committee for Animal Recording

Gather people from 8 countries

Benoit Rouillé (F) Nina Krattenmacher (D)

Raffaella Finocchiaro (I) Jan Lassen (DK)

Phil Garnsworthy (UK) Filippo Miglior (CA)

Birgit Gredler (CH) Jennie Pryce (AU)

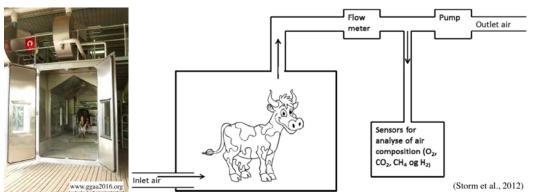
• Aims to:

- create an overview of the current data status for FE & ME
- facilitate the standardization of recording DMI & CH₄
- enhance international collaboration, technically and methodologically

- 1. Data and Recording Methods for Feed Intake and Methane Emissions
 - Materials/Methods used
 - Recorded parameters
 - Duration, repetition of measurements, ...

- 2. Selection Goals for Methane Emissions and Feed Intake Traits
 - Trait definition used, phenotype source(s)
 - Model composition, methodologies, ...
 - Status of evaluation for the traits

- 1. Data and Recording Methods for Feed Intake and Methane Emissions
 - Materials/Methods used
 - Recorded parameters
 - Duration, repetition of measurements, ...


- 2. Selection Goals for Methane Emissions and Feed Intake Traits
 - Trait definition used, phenotype source(s)
 - Model composition, methodologies, ...
 - Status of evaluation for the traits

1. Data and Recording Methods for Feed Intake and Methane Emissions

Respiration Chambers

Laser Methane Detector

Sulfur Hexafluoride (SF₆)

Headbox

- 1. Data and Recording Methods for Feed Intake and Methane Emissions
 - Materials/Methods used
 - Recorded parameters
 - Duration, repetition of measurements, ...

- 2. Selection Goals for Methane Emissions and Feed Intake Traits
 - Trait definition used, phenotype source(s)
 - Model composition, methodologies, ...
 - Status of evaluation for the traits

2. Selection Goals for Methane Emissions and Feed Intake Traits

Feed efficiency

Definition	Advantage	Disadvantage	
Dry Matter Intake (g / day)	Direct improvement possible	Lowering of production level and loss of appetite	
Feed conversion efficiency (kg Milk / kg Feed)	Well understood by farmers	Ratio trait, strongly linked to production	
Production efficiency (kg Milk / kg BW)	Fits interests of the farmers	Ratio trait, strongly linked to production	
Residual feed intake (DMI observed – DMI predicted)	Include corrections for correlated traits	Inversed values & higher complexity make it hard for farmers	

2. Selection Goals for Methane Emissions and Feed Intake Traits

Methane emissions

Definition	Advantage	Disadvantage	
Methane production (g/day)	Direct improvement possible	Lowering of production level and feed intake	
Methane intensity (g/kg DMI)	Well understood by farmers	Ratio trait	
Methane yield (g/kg milk or g/kg BW)	Fits interests of the farmers	Ratio trait	
Residual methane production (g observed – g predicted)	Include corrections for correlated traits	Inversed values & higher complexity make it hard for farmers	

- 1. Data and Recording Methods for Feed Intake and Methane Emissions
 - Materials/Methods used
 - Recorded parameters
 - Duration, repetition of measurements, ...

- 2. Selection Goals for Methane Emissions and Feed Intake Traits
 - Trait definition used, phenotype source(s)
 - Model composition, methodologies, ...
 - Status of evaluation for the traits

Genetic evaluation

Phenotype sources:

- Direct measurement
- Predicted phenotypes
 - using Milk MIR data
 - predict ME using FE data?
- Combination of both information sources
 - how well do these data can be merged?

Methodology:

- Single-step approach
- Estimation of marker effects and prediction of DGV

Inclusion in breeding goal:

- Which traits will have less weight in the breeding goal?
 - all proportionally?
 - less weight only on production traits?

- 1. Data and Recording Methods for Feed Intake and Methane Emissions
 - Materials/Methods used
 - Recorded parameters
 - Duration, repetition of measurements, ...

- 2. Selection Goals for Methane Emissions and Feed Intake Traits
 - Trait definition used, phenotype source(s)
 - Model composition, methodologies, ...
 - Status of evaluation for the traits

Feed efficiency is already applied

- Australia: Feed Saved Breeding Values
 - similar residual feed intake
 - expressed in kg DM
 - allows a BV for which higher values are better
 - introduced in April 2015
- The Netherlands: Dry Matter Intake Breeding Values
 - expressed in kg DM
 - implemented also in the Better Life Efficiency Index
 - introduced in April 2016

Current answers status

	Invited	Total takers	Complete responses	Partial responses
1. Data collection	120	19	7	12
2. Selection objectives	118	5	4	1

to participate contact us at: buttya@uoguelph.ca

Special acknowledgement to Cesare Mosconi

Participating Organizations & Funders

Ministry of Agriculture, Food and Rural Affairs

