

An international initiative to decrease the environmental footprint of dairy cattle using genomics

Filippo Miglior^{1,2}, C.B. Baes¹, A. Canovas¹, M. Coffey³, E.E. Connor⁴,
M. De Pauw⁵, B. Gredler⁶, E. Goddard⁵, G. Hailu¹, C. Huisma⁷, V. Osborne¹, J. Pryce⁸,
M. Sargolzaei^{1,9}, F.S. Schenkel¹, E. Wall³, Z. Wang⁵, T. Wright^{1,10}, P. Stothard⁵
¹University of Guelph, Canada, ²Canadian Dairy Network, Canada, ³Scottish Rural College, UK,
⁴USDA, USA, ⁵University of Alberta, Canada, ⁶Qualitas, Switzerland, GrowSafe, Canada, ⁸Dept of Econ Dev,

Jobs, Transport and Resources, Australia, ⁹Semex Alliance, Canada, ¹⁰Ontario Ministry of Agriculture, Canada

Impact of Genomics on Sire Evaluations

- Need for large reference populations to achieve accurate reliabilities of young stock parent averages
 - 0.70 Reliability of GPA vs. 0.35-0.40 reliability of PA
- Competing AI organizations that share genotypes
 - InterContinental Genomics Exchange Consortium
 Canada, US, Italy, UK, Switzerland and Japan
 - EuroGenomics

France, Germany, Netherlands, Denmark, Sweden, Finland, Poland and Spain

• Over 32,000 Holstein reference bulls per consortium

Strong impact due to immediate industry uptake

Annual Genetic Progress – Major Traits

Integrated Solution for Greener Dairy

- Genomics provides an opportunity to select for higher feed efficiency and decreased methane emissions
- > Will lessen the environmental impact of dairying
 - Reduction of emissions and feed waste
 - Less feeds (less land) used for dairying
- Compelling opportunity to make dairy greener worldwide, through strong collaboration
- Whereas at same time benefiting dairy producers
 - Reduction of feed costs
 - Potential credits for cutback in methane emissions

Efficient Dairy Genome Project

- Genome Canada Large Scale Applied Research Project
- Cash and in-kind funding from international and national partners to total CAD \$10.3 million
 - Genome Canada, Genome Alberta, Ontario Genomics
 - ALMA, Ontario MRI, CDN
- Start date Oct 2015 End date Sep 2019
 - Led by Filippo Miglior (Guelph) & Paul Stothard (Alberta)
- Overall objective to improve feed efficiency (FE) and reduce methane emissions (ME) in dairy cattle using genomics

A Fully Integrated Partnership

Experimental Design

Secure data base routinely updated and accessible by all partners

- Cow reference population for SNP calculation for FE and ME
- Continuous sharing of SNP solutions among partners
- Using MIR to predict FE & ME
- Genomic evaluations in each country using cow FE & ME
 - Adding relevant SNP
 - Multiple-trait evaluation adding MIR predicted FE and ME

Activities	Year 1	Year 2	Year 3	Year 4	
GE ³ LS Ethical, environmental, economic, legal and social aspects of genomics	Social benefits and costs of selection for FE and reduced ME				
	Societal acceptance and value of use of this new technology				
Data Consolidation	Feed Efficiency		8,000-10,000 cows		
	Methane Emissions		3,500 cows		
	Milk MIR data		1,000,000 cows		
Genomics	Imputation & GWAS				
	Sequence	Variant Discover	y RNA-Seq & Fu	RNA-Seq & Functional Studies	
Implementation	Genetic Evaluation & Software Development				
	Profit Index		GEBV Delivery & Translation		

Tangible Deliverables to End Users

- Weekly release of GEBV for FE and ME to producers and the AI industry integrated by
 - Newly-identified mutations or markers
 - New developed FE and ME predictions from MIR spectra
 - World's first database to routinely validate genomic predictions and continuous exchange among partners
 - Measurement of the farm level benefits from adopting the use of the GEBV for novel traits
 - Societal cost benefit analysis results from incorporating the new traits into national breeding programs

Team

Mary De Pauw Project Manager

Dan Hailemariam Allis Post-Doc, Canada Post-

Allison Fleming Post-Doc, Canada

Luiz Brito Post-Doc, Brazil

Pauline Martin Post-Doc, France

Adrien Butty PhD, Switzerland

Stephanie Lam PhD, Canada

Dave Seymour PhD, Canada

Caeli Richardson MSc, Canada

Angela Wilson MSc, Canada

Plans for Guelph Research Herd

Primiparous Heifers:

Feed Efficiency (n = 180/year)

Calf Measurements

Duration: 0-60 d

Genotyped at birth. BW recorded at birth, 1 month and 2 months. Milk replacer intake, starter intake (normally recorded)

Methane Emissions (n = 75 – 100/year)

Methane Emission Measurements

Other

Duration: 20 – 30 d GreenFeed System

<u>Daily (M−F)</u>

CH4 emissions measured Rumination collars every 4 hours. Measurements taken 1 hr later each day.

Feed Efficiency Measurements

Duration: -30 d to +150 d

<u>Daily</u>	Weekly	<u>Two Weeks</u>
Daily yield Daily feed	DHI (alternating am/pm recording):	Body weight
activity	Milk yield	Visual body
Daily feed	Milk fat, protein	conformation
intake	Lactose	
	BHBA	
BCS (every	MUN	
milking, using	SCC	
3D cameras)	Feed Samples	

Ongoing Measurements

Individual Cows	<u>Other</u>
Health events	Environmental data (RH, temp,
Reproduction events	inside and outside CO2)

Plans for Partner Farm – 450 cows

Pregnant Heifers (n = 150/year)

Possible Additions:

- Rumination Collars

- GreenFeed system

All animals genotyped with 50 K

*Body weight of cow measured from two front feet and is recorded multiple times per day

Methane Emissions

Progress

- Data routinely collected from each partner
- Survey to partners for data base development
- Survey to ICAR members
 - Trait definition and standardization
 - Selection goals definition
- Identification of bulls to sequence
- Setup of economic studies
- Strengthening of collaboration with gDMI 2
- Complementary projects recently approved
 - Microbiome and system biology (Dr. Angela Canovas)
 - Breeding Strategies (Dr. Christine Baes)

Participating Organizations

Acknowledgements

• Funding provided by

- Genome Canada, Genome Alberta, Ontario Genomics
- Alberta Livestock Meat Agency, Ontario Ministry of Research and Innovation, Ontario Ministry of Agriculture
- Canadian Dairy Network and GrowSafe
- USDA, DEDJTR, SRUC, Qualitas, Wageningen University and Aarhus University

