

Genome wide association study and genomic prediction for methane emission in Danish Holstein cattle

Jan Lassen, Peter Løvendahl, Guosheng Su & Goutam Sahana

Center for Quantitative Genetics and Genomics

Århus University

"With genomic selection it will be possible to select for scarsely measured traits such as feed efficiency and methane emission"

Phenomics

- "New" phenotypes
- > Feed intake
- > Rumen microbial composition
- > Methane

> "Data that you cannot just get provided for free with hardly any effort"

Large scale genotypings

- > Full herds gets genotyped
- > 10000s a nima ls a va ila ble
- > Phenomics on these cows

Aim of study

> Perform genomic breeding values with including accuracies for methane emission and compare with BLUP EBVs

> Perform GWAS to identify SNPs with major effect on methane emission

Laser

Quantifying methane production

- > Measure methane and carbon dioxide concentrations
- > Heat producing units (HPU) = 5.6 *live weight 0,75 + 22*FPCM + 1.6*10⁻⁵*days carried calf
- > CH4_LITERS = CH4_RATIO*180*24*HPU
- > Highly influenced by milk production
- > Ignoring variation in CO₂ production

Madsen et al., 2010

Danish data

Trait	Units	#	Mean	SD	Min	Max
CH4_RATIO		3121	0.087	0.012	0.043	0.109
CH4_LITERS	L/ day	1745	381	41.2	283	548
CH4_MILK	L/kg/day	1745	10.41	1.34	8.43	13.7
FPCM	L/day	3121	36.6	7.9	19.2	62.7
Weight	Kg	1745	647	68.4	467	890

Genomic prediction and GWAS

- > 1739 Holstein cows
- > Illumina 50 K SNP beadchip
- > 44007 SNPs after cleaning

Statistical model for GWAS

Methane mean herd-year fixed + fixed + season fixed pa rity + dim fixed reg + **SNP** fixed reg + animal ra ndom ra ndom re sidua l +

Genome wide association study

Genomic prediction using GBLUP

- > Five-fold cross validation procedure
- > Whole data randomly into five subsets
- \rightarrow Reliability = $(r_{ebv,y_c})^2/h^2$
- > Regression of y_c on estimated breeding values

Compares BLUP, GBLUP and GBLUP_w

Statistical model for genomic prediction

Methane mean herd-year fixed + fixed season fixed parity + dim fixed reg animal ra ndom + re sidua l ra ndom

Covariance structure for genomic prediction

1
$$\mathbf{a} \sim N(\mathbf{0}, \mathbf{A}\sigma_a^2)$$

2
$$\mathbf{a} \sim N(\mathbf{0}, \mathbf{G}\sigma_a^2)$$

3
$$\mathbf{a} \sim N(\mathbf{0}, \mathbf{G}_w \sigma_a^2)$$

Genomic prediction

Model	Validation set			
	Relia bility	Regression		
BLUP	0.171	1.025		
GBLUP	0.175	1.002		
GBLU _w	0.183	1.003		

Discussion

- > Stagnation in the development of the methane phenotype
- No incentive for the farmer to select for lower methane emission
- > A company with a business plan is needed
- > International collaborations are needed (gCH4, Genome Canada, METHAGENE)

Conclusion

- Scarsely measured traits are still complicated to evaluate and include in a breeding programme
- > Genetic variation exists for methane emission
- > Limited evidence of any SNP with an effect on methane emission
- › Limited difference in reliability between GBLUP and BLUP models