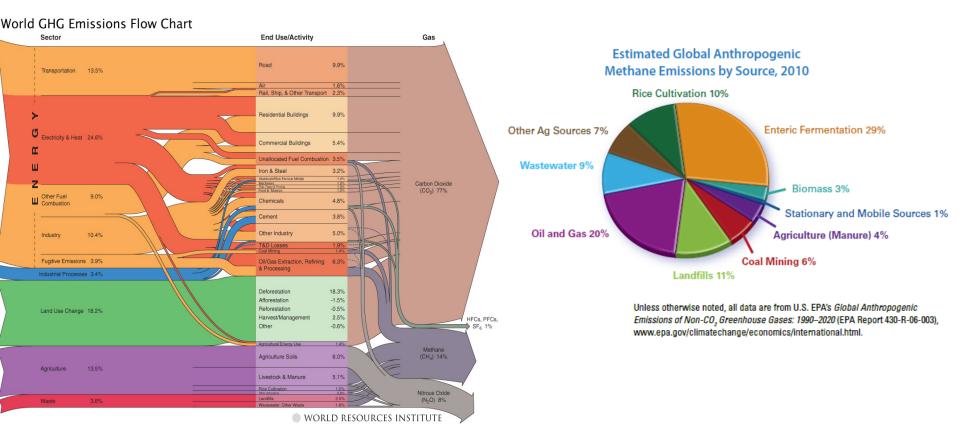
Genome wide association study of methane emissions in Australian Angus

Department of Economic Development, Jobs, Transport & Resources

Coralia Manzanilla-Pech, Yvette de Haas, Roel Veerkamp, Kathy Donoghue, Paul Arthur,

Jennie Pryce



Why is methane (CH₄)important?

Select for animals that emit less CH₄

What is needed?

- Identify the methane phenotype
- Accurate genetic parameters
 - Large amount of records
- Know the genetic structure of CH₄
 - Genotypes
 - GWAS studies

GWAS to identify SNP associated with CH₄ traits in Angus

Evaluate two residual CH₄ traits

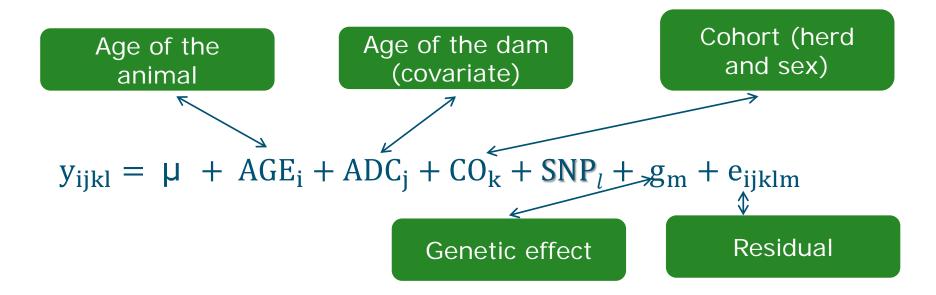
Description of the population

- 1020 Angus animals (both sexes)
- Growing animals (1-2 years old)
- 2 cohorts (herd and sex)
- Respiration chamber
- 800K Illumina Bovine HD genotypes

Methane traits and related traits

- Methane Production (MP)
- Dry matter intake and weight (DMI and WT)
- Residual methane traits:
 - RGM and RPM

Calculating Residual Methane


• RPM = MP -
$$[(\beta_p x DMI) + (\beta_p x WT)]$$

• $RGM = MP - [(\beta_g \times DMI) + (\beta_g \times WT)]$

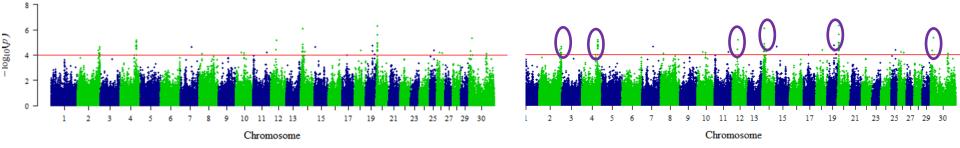
Kennedy et al. 1993. Genetic and Statistical Properties of Residual Feed Intake. J ANIM SCI 1993, 71:3239-3250.

Model

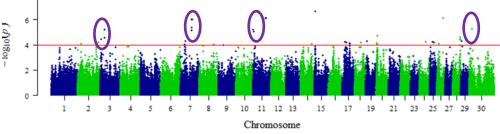
Descriptive statistics

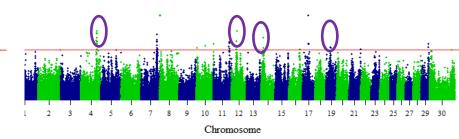
Trait	Unit	Mean	SD	Minimum	Maximum
MP	g/d	132.6	25.5	78.9	250.9
RPM	kg/d	4.9	15.9	-62.4	61.4
RGM	kg/d	-30.3	19.3	-113.3	21.0
DMI	kg/d	6.1	1.3	3.5	9.4
WT	kg	357.7	89.5	156.0	357.7

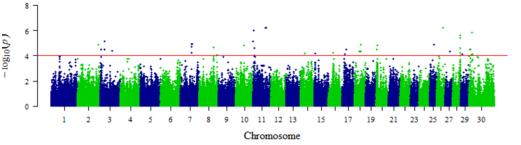
Genetic parameters

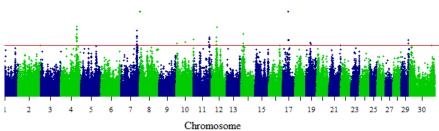

Trait	MP	RPM	RGM	DMI	WT
MP	0.30 (0.06)	0.65 (0.11)	0.55 (0.14)	0.83 (0.05)	0.80 (0.06)
RPM	0.71 (0.02)	0.19 (0.05)	0.98 (0.02)	0.04 (0.17)	-0.01 (0.17)
RGM	0.62 (0.02)	0.94 (0.00)	0.15 (0.05)	0.00 (0.18)	0.00 (0.18)
DMI	0.70 (0.02)	0.00 (0.04)	-0.10 (0.03)	0.39 (0.06)	0.98 (0.01)
WT	0.67 (0.02)	0.00 (0.04)	0.03 (0.03)	0.93 (0.01)	0.41 (0.06)

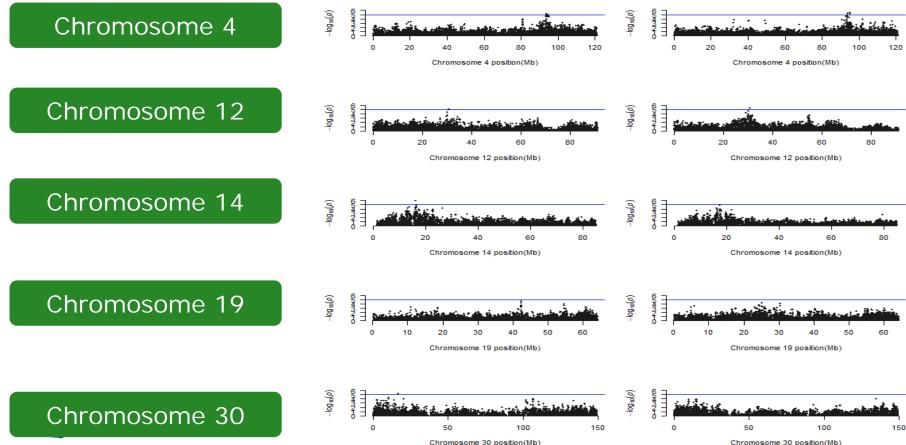
• Heritabilities, genetic correlations, phenotypic correlations






8 -





WT

Manhattan plots for MP and DMI

Chromosome 30 position(Mb)

SNPs in common between traits

Trait	MP	RGM		RPM	DMI	WT
	(3,304)	(3,078	8)	(3,120)	(3,364)	(3,284)
MP (803)			390	591	633	627
RGM (652)	93			1,731	104	29
RPM (647)	141		369		234	27
DMI (851)	101		7	22		3,157
WT (844)	104		1	1	830	

* () # significant SNP per trait, SNP in common at P<0.005 and SNP in common at P<0.001

Conclusions

- MP is dependent on DMI and WT
- Chromosomes 2, 4, 12, 14, 20 and 30 had significant SNP for MeP
- RPM and RGM are different traits than MeP

Thank you for your attention

Methane is an heritable trait with significant SNP in several chromosomes

EU FP7 IRSES SEQSEL Grant No. 317697

Manzanilla-Pech, et al. 2016. Genome wide association study of methane emissions in Angus beef cattle with validation in dairy cattle. doi: 10.2527/jas.2016-0431

