Faculty of Health and Medical Sciences

Transcriptomics of Feed Efficiency in Nordic Dairy Cattle

<u>Salleh, M.S.</u>¹, Mazzoni, G. ¹, Höglund, J.K.², Olijhoek, D. ^{2,3}, Lund, P. ³, Løvendahl, P.², Kadarmideen, H.N.¹

¹ Animal Breeding, Quantitative Genetics & Systems Biology (AOS) Group, Department of Large Animal Sciences, SUND, University of Copenhagen

²Center for Quantitative Genetics & Genomics (QGG), Dept. of Molecular Biology and Genetics, Aarhus University

³Department of Animal Science, Aarhus University

Acknowledgements

University of Copenhagen, AQS group – PhD Program funds Feed Utilization Nordic Cattle (FUNC) - Experiment Ministry of Education Malaysia (MoE) and Universiti Putra Malaysia– Co-finance

Principal Supervisor and Project Leader

Professor Haja Kadarmideen

Co-supervisor

Dr. Peter Løvendahl

Field work/phenotypic measurements:

Gianluca Mazzoni Lisette Kogelman Gilda Kischinovsky Rúta Skinkyté-Juskiené Markus Drag Duy Ngoc Do Johanna Höglund Peter Lund Dana Wilhelmina Olijhoek Torkild Nyholm Jakobsen Anne Louise Frydendahl Hellwing Gareth Difford Jens Balslev Clausen

Why transcriptomics and why on FE?

- Feed efficiency important trait to be improved for the sustainability
- Exploit the availability of sequence databiological information (e.g. liver for FE)
- RNAseq experiments high-throughput biological assays for measuring the abundance of mRNA
 - To identify candidate genes
 - Differentially expressed
 - Pathways
 - etc

Main Objectives

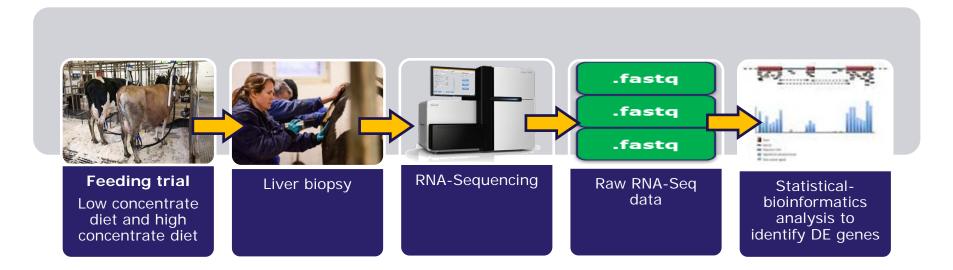
Bioinformatics research for Feed Efficiency – To identify

- Differentially expressed (DE) genes
- Biological function of the DE genes
- Potential interaction between FE and different diets
- Potential hub genes/biomarkers
- Molecular pathways involved

Experimental design

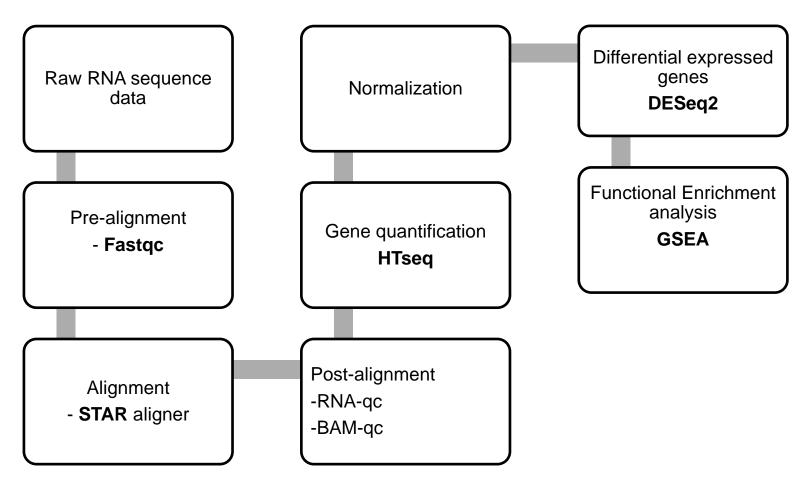
• 2 levels of FE (High and Low) in 2 breeds

	HOLSTEINS	JERSEYS	Total
HIGH FE	5	5	10
LOW FE	5	5	10
Total	10	10	20


- 2 types of feed diet
 - control (low concentrate) diet and High concentrate diet

	Control	HC
Forage:concentrate	70:30	40:60

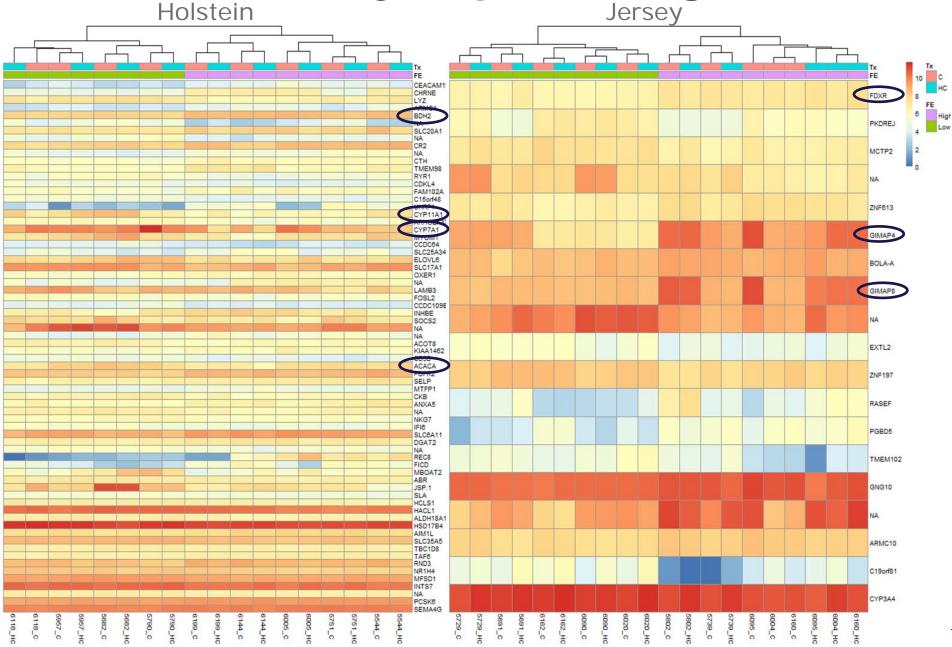
• 2 FE x 2 feed diet in each breed


	High FE	Low FE	Total
Control	5	5	10
High Concentrate	5	5	10
Total	10	10	20

Experimental Workflow

RNA-Seq Analysis Pipeline

UNIVERSITY OF COPENHAGEN



OUTPUT AND RESULTS

Differentially Expressed genes Holstein Jersey

DEG biological functions - Holstein

CYP11A1 and CYP7A1

- Upregulated in low FE
- Synthesis of cholesterol, steroids and other lipids

ACACA

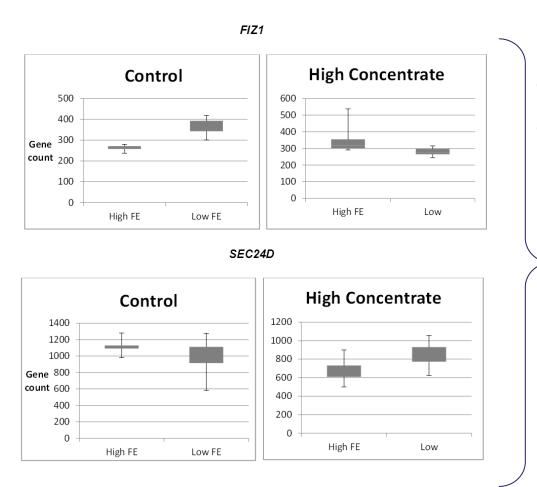
- Upregulated in low FE
- Cause the deposition of fat in low FE

BDH2

- **Downregulated** in low FE
- Metabolism, synthesis and degradation of ketone bodies

DEG biological functions - Jersey

FDXR


- Upregulated in high FE
- cholesterol metabolism, which is also part of steroid metabolism

GIMAP4 and GIMAP8

- **Upregulated** in the high FE group
- controlling the immune system and involved in responses to infections

Genes in FE x diet interaction in Jersey

- Protein coding gene
- Related pathways
 - Metabolism and transport to the Golgi and subsequent modification
 - Transcriptional regulation

Functional enrichment Gene Set Enrichment Analysis (GSEA) – Holstein

Downregulated KEGG pathways for FDR q-value <0.05 from the output of GSEA in Holstein

	Name	FDR q-value
1	Primary immunodeficiency	0.000
2	Natural killer cell mediated cytotoxicity	0.000
3	T cell receptor signaling pathway	0.000
4	Leukocyte transendothelial migration	0.002
5	Chemokine signaling pathway	0.002
6	FC gamma R mediated phagocytosis	0.008
7	Propanoate metabolism	0.009
8	Rig I like receptor signaling pathway	0.013
8	Cell adhesion molecules cams	0.012
9	Calcium signaling pathway	0.012
10	B cell receptor signaling pathway	0.021
11	Viral myocarditis	0.031
12	Nod like receptor signaling pathway	0.028
13	FC epsilon RI signaling pathway	0.038
14	Leishmania infection	0.043

GSEA - Jersey

Downregulated KEGG pathways for FDR q-value <0.05 from the output of GSEA in Jersey

	Pathways name	FDR q-value
1	Primary immunodeficiency	0.010
2	Leukocyte transendothelial migration	0.006
3	Leishmania infection	0.015
4	Cytosolic DNA sensing pathway	0.013
5	Hematopoietic cell lineage	0.044

Upregulated KEGG pathways for FDR q-value <0.05 from the output of GSEA in Jersey

	Pathways name	FDR q-value
1	Metabolism of xenobiotics by cytochrome P450	0.003
2	Retinol metabolism	0.002 Santana et al 2015 and 2016
3	Sphingolipid metabolism	0.015
4	Starch and sucrose metabolism	0.012
5	Ether lipid metabolism	0.009
6	Steroid hormone biosynthesis	0.013 McCabe et al, 2012
7	Glycolysis gluconeogenesis	0.025
8	Arachidonic acid metabolism	0.023
9	Drug metabolism cytochrome P450	0.029
10	Pentose phosphate pathway	0.029

Conclusions

This study provides information of liver transcriptome of **high** versus **low feed efficient** cows.

- The DE genes Top genes
 - CYP's genes in Holstein
 - **GIMAP** genes in Jersey.
 - 2 genes FE x Diet interaction in Jersey
- Functional enrichment- the DE genes involved in pathways:
 - Primary immunodeficiency,
 - Retinol metabolism
 - Starch, sucrose, sphingolipid and lipid metabolisms
- The pathways are involved in controlling the FE- shows the complexity of the trait

Implications and future works

- Possible inclusion in genomic selection
 - sgBLUP (System genomic BLUP)
 - BLUP|GA (BLUP approach given the Genetic Architecture)
 - Bayes R

- Conduct an integrative analysis
 - Gene co-expression networks
 - eQTL analysis
 - Metabolomics analysis

UNIVERSITY OF COPENHAGEN

THANK YOU

