



# Effect of linseed plus nitrate on methane emission in bulls, animal health and residues in offal

### Michel DOREAU, Marie ARBRE, Yvanne ROCHETTE, Clothilde LASCOUX, Cécile MARTIN

**INRA, Herbivores Research Unit, Theix – Auvergne-Rhône Alpes Centre** 

**Experiment granted by :** 







Livestock sector accounts for 14.5% of anthropogenic greenhouse gases (GHG) emissions, and methane (CH<sub>4</sub>) represents 39% of these emissions (FAO, 2013)

Among dietary ways to decrease enteric methane, unsaturated lipids and nitrate as additive have proven to be efficient (Martin et al., 2010, Animal, Hristov et al., 2013, J. Anim. Sci., Lee and Beauchemin, 2014, Can. J. Anim. Sci.)

Their use is possible to a large scale in farm conditions, leading to a significant abatement in CH<sub>4</sub> emissions while maintaing production and without adverse effects on other environmental issues (Doreau et al., 2014, Anim. Prod. Sci.)



## Lipids and nitrate as mitigating agents



Unsaturated lipids : linseed

- Among the most efficient ways May improve product quality (omega-3)
- Fails sometimes to reduce methane Expensive
- Efficient in most experiments
  (dietary fermentable N to be controlled)
- Risk of nitrite toxicity for animals (methaemoglobinaemia)
  Possible residues in products

#### **Nitrates**



#### Moderate mitigation to limit toxicity (nitrates) and cost (lipids)

Target : 10% decrease in methane (g/kg dry matter intake)

#### **Association between lipids and nitrates**

Proven to be synergistic in dairy cows (Guyader et al., 2015, J. Anim. Sci.) Not yet studied for bull fattening



67% haylage – 33% concentrates ad libitum
 Control (C) vs Linseed + Nitrate (LN)
 + 1.9% FA from linseed and 1% nitrate in the diet





Methaemoglobinaemia (spectrophotometry)
 Nitrite and nitrate in tongue, rumen and liver (colorimetry)



### Methane measurement technique

### Greenfeed (C-lock, USA) evaluated beforehand

(Arbre et al., 2016, Anim. Prod. Sci. and abstract in this meeting :

poster 54-08 - abstract p. 487)



- 1 device for 2 diets :
- only C concentrate in the Greenfeed for both diets
- expected linseed and nitrate concentrations in the diet achieved by giving in the trough a second concentrate rich in linseed and nitrate



# Intake and performance

|                       | С    | LN   | Р    |
|-----------------------|------|------|------|
| DM intake             | 11.5 | 10.6 | 0.08 |
| Liveweight gain (g/d) | 1596 | 1256 | 0.01 |

- Trend to a lower intake for LN diet due to refusals of LN concentrate resulting in a higher proportion of forages observed in a previous trial in dairy cows (Guyader et al., 2016, Animal)
- Negative consequence on liveweight gain



## Methane emission

|                    | C    | LN   | Р     |
|--------------------|------|------|-------|
| Methane (g/d)      | 271  | 239  | <0.01 |
| Methane (g/kg DMI) | 24.0 | 23.2 | 0.34  |
| Methane (g/kg LWG) | 172  | 200  | 0.18  |

> No direct effect of LN on  $CH_4$  (g/kg DMI)

Lipid and nitrate supply are probably too low for a significant decrease in methane in our experimental conditions (8 bulls per diet)



### Methaemoglobinemia

#### C diet: non detectable (ND) i.e. < 2 % of total Hb

#### LN diet: see Table below

#### Adaptation

| Animal | Wk   | Wk | Wk | Wk   | Wk   | Wk   | Wk   | Wk | Wk   | Wk   | Wk | Wk | Wk |
|--------|------|----|----|------|------|------|------|----|------|------|----|----|----|
|        | 1    | 2  | 3  | 4    | 5    | 6    | 7    | 8  | 9    | 10   | 11 | 12 | 13 |
| 1      | ND   | ND | ND | ND   | ND   | ND   | ND   | ND | ND   |      |    |    |    |
| 2      | ND   | ND | ND | ND   | ND   | ND   | ND   | ND | ND   |      |    |    |    |
| 3      | ND   | ND | ND | 2.33 | 4.21 | 5.56 | ND   | ND | 3.60 |      |    |    |    |
| 4      | ND   | ND | ND | ND   | ND   | ND   | 2.23 | ND | ND   |      |    |    |    |
| 5      | ND   | ND | ND | ND   | ND   | ND   | ND   | ND | ND   | 3.71 |    |    |    |
| 6      | ND   | ND | ND | ND   | ND   | ND   | ND   | ND | ND   | ND   | ND |    |    |
| 7      | ND   | ND | ND | ND   | ND   | ND   | ND   | ND | ND   | ND   | ND | ND |    |
| 8      | 2.72 | ND | ND | ND   | ND   | ND   | 4.40 | ND | ND   | ND   | ND | ND | ND |

Always lower than risk threshold (30-40 %, Lee and Beauchemin, 2014)

Does not depend on time since first distribution

### **Residues in offal**

### Nitrate and nitrite concentration (mg/kg fresh tissue)

|         | С    | LN   | Р    |
|---------|------|------|------|
| Tongue  |      |      |      |
| Nitrate | 3.65 | 5.40 | 0.21 |
| Nitrite | 1.54 | 1.67 | 0.73 |
| Liver   |      |      |      |
| Nitrate | 4.87 | 4.21 | 0.69 |
| Nitrite | 1.42 | 1.58 | 0.65 |

#### > No residues in offal

Already observed in milk and dairy products (Guyader et al., 2016, Animal)



# **Concluding remarks**

Non-significant mitigating effect (- 4%) for CH<sub>4</sub>/kg DMI when moderate supply of linseed and nitrate is given

Results for methane emission to be explained (or not) by microbial ecosystem sampled at slaughter (Popova et al., in progress)

Results for metHb and residues are encouraging in well-monitored conditions of nitrate distribution

