Isotopic natural abundance as biomarkers of between-animal variation in feed efficiency in ruminants

- S.J. Meale, I. Ortigues-Marty, C. Chantelauze, A.M. Schiphorst, R. Robins and
- G. Cantalapiedra-Hijar

Source: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat (2007)

Source: FAOSTAT; World Bank

> Today ruminants consume 30% of crops grown globally and occupy another 30% of global land mass (Thornton, 2010)

Need to improve production efficiency on currently available land area and resources to minimise environmental impact

Feed Conversion Efficiency (FCE)

kg gain/ kg DMI

Residual Feed Intake (RFI)

Actual – expected intake for maintenance and growth over a set period

- independent of BW and weight gain
- \rightarrow moderately heritable trait (h² = 0.29-0.46)
- Variable efficiency to assimilate nutrients between individuals
- > Expensive and difficult to measure in farming conditions

Objective

Explore natural abundance of ¹⁵N and ¹³C and isotopic fractionation as biomarkers of individual feed efficiency in cattle fed forage-based diets

Natural abundance of isotopes

- > Calculated as the ratio of heavier isotope to lighter isotope, compared to a reference standard:
 - > 13C/12C
 - > 15N/14N
- Lighter isotopes tend to form weaker bonds and react faster than heavier isotopes (Macko et al., 1984)
 - ➤ Abundance of stable isotopes varies between chemical species = **fractionation** (Gannes et al., 1998)

Isotopic N fractionation : $\Delta^{15}N_{\text{(animal-diet)}} = \delta^{15}N_{\text{animal}} - \delta^{15}N_{\text{diet}}$

Digestion

Rumen bacterial protein synthesis

Transaminases and deaminases prefer ¹⁴N-NH₃ vs ¹⁵N-NH₃

Wattiaux and Reed, 1995

Metabolism

Hepatic amino acid (AA) catabolism

Transaminases and deaminases prefer ¹⁴N-AA *vs* ¹⁵N-AA

Macko et al., 1986

Enrichment of ¹⁵N in the animal

<u>Carbon enrichment is thought to be subjected to the same isotopic discrimination</u>

EFFICIENT

¹⁵N animal H¹⁵N diet

INEFFICIENT

¹⁵N animal > ¹⁵N diet ¹⁵N urine < ¹⁵N diet

Feed conversion efficiency, kg/100 kg

➤ Diet: Dehydrated Lucerne pellet supplemented with Low (100 g) or high (400 g) barley for 75 d pre-slaughter

Can isotopic natural abundance be used as a biomarker of between-animal variation in feed efficiency?

54 Charolais bulls

- Diet of 67% forage: 33% grain
- > Tested for RFI and FCE at 8-10 months of age for 112 days
- Plasma was collected at the end of the RFI test
- Natural abundance of ¹⁵N and ¹³C in plasma proteins was determined using a continuous flow isotope ratio measurement mass spectrometer following total combustion in an elemental analyzer (EA-irms)
- Regression analysis was used to determine the relationship between isotope abundance and feed efficiency indices

FCE correlates with $\delta^{15}N$ when diet is unknown

Isotopic N fractionation facilitates ranking of individual FCE across different years

... yet no correlation was observed between RFI and $\delta^{15}N$ natural abundance

... Or with isotopic N fractionation

Variable correlation between FCE and δ^{13} C natural abundance

Correcting for diet $[\Delta^{13}C_{(animal-diet)}]$ did not strengthen the correlation

Nor was a correlation observed with RFI

... and similarly, no correlation between $\Delta^{13}C_{\text{(animal-diet)}}$ and RFI was observed

Conclusion

- The relationship between $\delta^{15}N$ or $\Delta^{15}N_{(animal-diet)}$ in plasma proteins and feed conversion efficiency indicates their potential as a biomarker of between-animal variations of feed efficiency, when diet is either unknown or known.
- $> \delta^{15} N \text{ or } \Delta^{15} N_{\text{(animal-diet)}}$ is not a strong predictor of RFI in ruminants
- ightharpoonup The lack of relationship between $\delta^{13}C$ or $\Delta^{13}C_{(animal-diet)}$ suggests it may not be a suitable biomarker for feed efficiency (FCE or RFI) in ruminants

Thank you Questions?

Uni. Nantes

R. Robins

I. Téa