

Feeding behaviour, explained by temperament and dominance, impacts feed efficiency in beef cattle

Pol Lloncha,b, Miguel Somarribab, Marie Haskellb, Simon Turnerb

^aUAB, School of Veterinary Science, Cerdanyola del Valles, 08193, Barcelona, Spain ^bSRUC, West Mains Road, Edinburgh, EH9 3JG, United Kingdom

Leading the way in Agriculture and Rural Research, Education and Consulting

Feeding behaviour & performance

- Feeding behaviour has been found to associate with feed efficiency and growth in beef cattle
- Longer feeding time and more frequent feeding bouts are associated with higher productivity.

...what determines feeding behaviour?

From temperament to performance

- In cattle (social animal), feeding behaviour may be determined by hierarchy and dominance rank.
- Excitable temperaments have been associated with shorter feeding bouts and lower intake.
- Differences in temperament and behaviour could impact productivity and feed efficiency.

Objective

- Investigate how feeding behaviour is associated with productivity and whether this can be explained by temperament and dominance rank in beef cattle.

M&M: Performance measures

- Six groups of 14 steers (n=84) were housed during 8 weeks
- Dry matter intake
- Body weight
- Fat depth

Residual Feed Intake (RFI)

M&M: Temperament and behaviour

Feeding behaviour

- Feeding frequency (x day)
- Total feeding time (x day)
- Feeding bout duration

Temperament

- Crush score: Handling excitability
- Flight speed: Escape velocity at release

Social behaviour

- Displacements (frequency and index)
- Aggressions (frequency and index)

M&M: Experimental design

- 84 steers (castrated male beef)
- Factorial 2x2
 - Diet: concentrate forage
 - Breed: Luing Charolais crossbred

Stats: Multivariate mixed models (stepwise)

In forage fed steers, a longer time feeding increased feed efficiency (decreased RFI)

RFI =
$$\mu$$
 + diet + breed + **diet*dFeed_time**

	μ	diet	breed	diet*dFeed_time
Factor		concentrate	charolais	forage
b	1.687	-2.44	-0.37	-0.0014
p-value	<0.01	<0.01	<0.01	<0.05

Dominant animals (*Displ_Index*) spent more time

feeding (dFeed_time).

 R^2 =0.053 p = 0.0299

Reduction of intake improves feed efficiency (Llonch et al., 2016)

Temperamental steers (AvgeFS) had lower feed intake

 R^2 =0.072 p = 0.0319

Steers that ate more frequently (nFeed_bouts) emitted less CH₄.

$$CH_4$$
 (g/kg DMI) = μ + diet + **nFeed_bout**

	μ	diet	nFeed_bout
Factor		concentrate	nFeed_bouts
b	58.40	-44.03	-0.24
p-value	<0.01	<0.01	<0.01

Temperamental steers (AvgeFS) visited the feeder more often...

 $R^2 = 0.091$ p = 0.0026

... and dominant steers (Displ_Tot) as well.

 $R^2 = 0.02$ p = 0.0207

Discussion

- 1. More time spent feeding is associated with greater feed efficiency possibly due to greater secretion of saliva and increased access of microbiota to fibre.
- Greater time feeding is explained by increased access to feed in dominant animals. Dominance cannot be manipulated but a reduction of the competence could help increasing the average herd feeding time.

Discussion

- 3. Temperamental steers show lower feed intake which improves feed efficiency but at the same time reduces growth.
- 4. A higher frequency of visits to the feeder, partially explained by high temperament and dominance rank, reduces CH₄ emissions. Besides the CH₄ effect, higher feeding frequency may help distribute feeding bulks and reduce the risk of acidosis.

Implications

- Promoting a longer feeding time and frequent and well distributed feeding bouts will benefit beef production efficiency.
- Longer feeding time and higher intake can be promoted by breeding and managing animals towards lower temperament.
- Efficiency, as well as CH₄ emissions, can be improved by reducing the dominance rank. As it cannot be manipulated, housing and management strategies may help reducing competence and thus the effect of dominance-subordination on feeding behaviour

Acknowledgements

This work was funded by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-331505).

Leading the way in Agriculture and Rural Research, Education and Consulting