

Non-invasive indicators of rumen function and stress in dairy cows

Laura Jayne Tennant

UNITED KINGDOM · CHINA · MALAYSIA

Acknowledgements and Thanks:

Prof Phil Garnsworthy
Dr Gavin White
Dr R Anand-Ivell
Team Garnsworthy

Eric Mostle Rupert Palme

With a special thank you to my funders

AHDB Dairy

Potential stressor?

- Dietary change might cause a stress response in the cow that might be reflected by changes in faecal glucocorticoid concentration.
- ➤ A change in diet composition, how does this affect rumen function and performance, if at all?
- We investigated effects of diet change on non-invasive indicators of rumen function and stress.

- Milk Yield
- Rumination rate

- Faecal samplingfaecal glucocorticoids
- 10 to12 hours after stressor

- Dry matter intake
- Digestibility
- Methane emissions

Response to mild stressors

Response to mild stressors

Response to stress: Dry Cow vs Lactating Cow Stressor = Foot Trimming

Before stress (P 3)

After stress (P=0.238)

Response to diet changes

		Per				
	1	2	3	4	σ	Р
Faecal Glucocorticoids (ng/g) Rumination time	300	585	691	876	240.9	<0.05
(min/d)	423	430	415	390	17.5	0.53
Milk yield (kg/d)	37.8	36.1	33.9	29.0	3.8	0.74
DMI (kg/d)	24.3	22.2	22.0	22.0	1.13	0.98
Faecal AIA (g/kg)	37.8	36.9	41.3	40.6	2.12	0.95
Methane (g/d)	373	448	425	471	42.0	0.57

No effect of diet.

Period effect suggests potential cumulative response to diet changes on faecal glucocorticoids

Response to diet changes (Silage trial)

	Period									
	1	2	3	4	5	σ	p			
Faecal										
Glucocorticoids (ng/d)	129	154	189	238	170	41.1	0.16			
Rumination (min/d)	339	438	433	436	433	43.1	0.99			
Milk Yield (kg/d)	43	43	39	38	39	2.5	0.35			
Methane (g/d)	339	328	359	360	362	15.2	0.38			

P 1-3 silage batch changes

P 4- Inclusion of straw and decrease of molasses

P 5 – Compact feeding

Forage changes and composition had no effect on factors outlined

Conclusions so far...

- Method validated detects mild stress events
- Differences in stress response indicator in dry vs lactating cows
- Diet change Trial 1 ... Period effect not Diet effect.
 Interesting ... cumulative effect or artefact of experiment?
- Faecal glucocorticoids not associated with rumen function, intake or milk yield
- Routine changes in farm silage batch ... no response in faecal glucocorticoids

*** Further work will confirm if period and/or dietary changes are repeatable in raising faecal glucocorticoids ***