

Air flow patterns and gas concentration distribution in naturally ventilated barns – results from field measurements and CFD simulations

Marcel Koenig, David Janke, Sabrina Hempel, Chayan Saha, Merike Fiedler, Werner Berg, Thomas Amon

Outline

- Motivation
- Air flow measurements
- Air exchange simulation
- CO₂-balance

Motivation

- Air flow through naturally ventilated barns (NVB) links outdoor environment and buildings microclimate
- Varying climate
 conditions affect
 transport of excess
 heat, moisture and
 pollutant gases

- <u>Challenge:</u> Quantification of air exchange and prediction of indoor climate parameter distribution
- Problem: Large spatial and temporal variability

Methods: On-farm measurements

USA-ATB

High-resolution data

- 14 (+3) USA
- 12 FTIR suction points

(8 inside, 4 outside)

Methods: Boundary layer wind tunnel

- Wind tunnel 20m x 3m x 2.3 m
- Scale model of the barn and surroundings 1:100

- LASER-light-section (flow visualisation)
- 2D LDA and fast-FID (quantitative measurements)

Methods: Computational Fluid Dynamics (CFD)

ANSYS 14.5

Raynolds-averaged Navier-Stokes [RANS] approach with standard kinetic energy (k) dissipation (μ) model for turbulence parametrisation

OpenFoam 2.3.0

Large Eddy Simulation [LES] with eddy viscosity model for the subgridscales

Boundary conditions: velocity inlet, presure outlet and walls

Preliminary results: Air flow pattern

typical patterns for selected meteorological boundary conditions

Preliminary results: Air exchange (CFD)

Preliminary results: Air exchange (CFD)

Preliminary results: Time dependence

Steady-state
Reynoldsaverage NavierStokes (RANS)

VERSUS

Unsteady Large
Eddy Simulation
(LES)

unsteady behaviour affects estimated air exchange

Preliminary results: CO₂ indoor distribution

Large spatial deviations in wind speed lead to high fluctuating gas concentrations

Preliminary results: CO₂ background for balance

Outdoor concentration	Available daily values	Average air exchange $[h^{-1}]$	Mean total error [h ⁻¹]
"Gold" – Min.	148	25.8	
MP 4	141	26.2	0.9
MP 12	96	30.2	6.1

"Gold Standard" (outdoor minimum)

best choice: MP 4

worst choice: MP 12

Conclusion

- 3-columns to significantly improve knowledge of the emission source "dairy barn"
 - Field measurements: long-term on-farm data for model validation, assessment of emission rates
 - Modelling: study influence of boundary conditions, highresolution data
 - → physical modelling (boundary layer wind tunnel) and numerical simulations (focus on LES)