

Comparison of male selection strategies in Finnish blue fox population using stochastic simulation

Jussi Peura

Jussi.peura@slu.se

Swedish University of Agricultural Sciences EAAP 2016

Introduction

Breeding goals in blue fox production:

- **✓** Better fur quality
- ✓ Larger pelt
- **✓** Better fertility
- ✓ Better feed efficiency
- √ Better leg conformation

Introduction

Production structure:

- ✓ More than 95 % AI
- ✓ All farms have their own:
 - Database
 - BV evaluation (BLUP)
 - Female selection
 - Male selection
 - Mating planning
 - Some exchange of breeding animals between farms

Introduction

Production structure:

- ✓ 2015 common national database and BV evaluation (BLUP)
- ✓ But still all farms have their own:
 - Female selection
 - Male selection
 - Mating planning
 - Possibility to more accurate selection, especially males
 - > Possibility to alternative selection strategies

Goal of the study

- A. What is the difference in genetic gain and rate of inbreeding between different male selection scenarios:
 - ✓ Selection within farm using truncation selection
 - ✓ Selection across farms using truncation selection

- •10 vs. 25 females/male
- 10 vs. 50 % genotyped male pups

B. If rate of inbreeding is fixed to level of A what would be the genetic gain if optimal contribution is used?

Traits in selection objective (all selection scenarios):

- ✓ Animal size at grading, scale 1-5
- ✓ Pelt quality, scale 1-5
- ✓ Litter size at birth
- ✓ Front leg conformation, scale 1-5
- ✓ Feed efficiency g growth / kg DM feed

Selection scenarios

Methods

		Selection scenario	Females/ male	Genotyped male pups (%)	Selection method
Scenario I	a	Within farm	10	50	Truncation
	b	Within farm	10	10	Truncation
	С	Within farm	25	50	Truncation
	d	Within farm	25	10	Truncation
Scenario II	a	Across farms	10	50	Truncation
	b	Across farms	10	10	Truncation
	c	Across farms	25	50	Truncation
	d	Across farms	25	10	Truncation
Scenario III		Across farms	10	50	Optimal contribution

- Direct genomic breeding value without simulating markers, genes or chromosomes was applied using pseudo-genomic method (Buch et al. 2012)
- Accuracies of GBV's were the same for all traits within each scenario (0.50)

All scenarios had:

- ✓ 5 farms with equal herd size (1352 females, 140 males)
- ✓ Fixed age structure within farm and litter size:

Age (years)	Females		Males
	n (%)	Litter size	n (%)
1	600 (44)	7	92 (66)
2	352 (26)	9	34 (24)
3	200 (15)	9	14 (10)
4	128 (9)	9	-
5	72 (5)	8	-

Heritabilities, economic values, and genetic correlations:

_
Animal size
Pelt quality
Litter size
Front leg conf.
Feed efficiency

EUR/unit	h ²
8.43	0.32
26.08	0.28
14.91	0.12
0.00	0.22
0.40	0.25

Pelt quality	Litter size	Front leg conf.	Feed efficiency
0.17	-0.10	-0.51	-0.09
	-0.05	0.00	0.05
,		0.00	0.00
	'		-0.11

- 10 years, 50 replicates
- Average genetic gain and rate of inbreeding were estimated between years
 6 and 10
- Stochastic simulation by ADAM software (Pedersen et al. 2009) was used to estimate genetic gain and rate of inbreeding
- Breeding values were estimated using multitrait animal model with DMU software (Madsen et al. 2006)

Rate of inbreeding / year

Genetic gain: Value of total genetic gain (EUR)

Genetic gain: Value of total genetic gain (EUR)

EUR

Rate of inbreeding / year

Genetic gain

- ✓ Scenarios with across farms selection gives higher genetic gain (EUR) than within farm selection scenario
- ✓ Rate of inbreeding is not a problem with current structure

➤ **BUT**, if rate of inbreeding is fixed to same level as in truncation selection, optimal contribution selection gives higher genetic gain (EUR) than truncation selection

Sensitivity test

✓ Females / male have clear effect to both genetic gain and rate of inbreeding, more females > higher genetic gain and and higher rate of inbreeding

✓ Proportion of genotyped male pups had only mild effect to genetic gain and rate of inbreeding, higher proportion > higher genetic gain and lower rate of inbreeding

To be improved

- Missing genetic correlations unlikely 0
 - Genetic gain of litter size may be overestimated
 - Value of total genetic gain may be overestimated
- ✓ True economic value of leg conformation is not 0
 - What should the economic value be to avoid decrease in leg conformation?
 - How much genetic gain do we lose in other traits?

The next question/research topics are:

➤ How much does the improvements (update of genetic correlations, economic values and % of genotyped male pups) affect the results?

What is the profitability of the each selection strategies?

Acknowledgements

- Co-authors Anders Christian Sørensen and Lotta Rydhmer
- This project is funded by the Finnish Fur Breeders Association

SUOMEN TURKISELÄINTEN KASVATTAJAIN LIITTO RY FINLANDS PÄLSDJURSUPPFÖDARES FÖRBUND RF

