# Genome-wide association studies using a Bayesian dominance model

Jörn Bennewitz, Theo Meuwissen & Robin Wellmann

**Institute of Animal Science** 

University Hohenheim, Germany

Institute of Animal and Aquacultural Science

Norwegian University of Life Science

## Single-marker GWAS

- One SNP at a time, mixed models with fixed SNP substitution effect, simple & fast calculations (ASReml, GCTA, PLINK, ...).
- Produces a ,p-value', convienient to use for post-GWAS calculations (e.g. Bonferroni, FDR, meta-analysis).
- Many associations, but explained variance by mapped QTL is small due to imperfect LD & small QTL effects.
- Neighboured SNP may explain jointly much more QTL variance than any SNP by itself.

### Multi-marker GWAS



- ➤ GS-methods: fitting all markers simultaneoulsy. Population structure is well approximated (even in admixed populations).
- Marginal marker effects (effects not explained by other markers).
- Window approach: explained variance of markers within a windows (e.g. 1 cM in size).
- BayesC and BayesR probably most used gs-methods for GWAS.

## Aim of the study: BayesC vs. BayesD for GWAS

- BayesC (Verbyla et al. 2009) uses priors about e.g. the distribution of additive effects and the proprotion of important markers, but dominance is not considered.
- BayesD (W. & B. 2012) is an extension of BayesC towards accounting für dominance effects.

## Aim of the study:

Can we improve power and precision of QTL mapping when using BayesD compared to BayesC?

## Simulation protocol

- Fischer-Wright populations, various marker densities & full sequence data
- In the last gen 15 SNP/chr randomly selected to become a QTL
- QTL additive and dominance coefficients (delta) sampled based on what is known about their dependencies



$$\tilde{\delta}_n \sim \mathcal{N}(0.2, 0.3^2)$$

$$\tilde{a}_n | \tilde{\delta}_n \sim \mathcal{N}(0, \exp(3\tilde{\delta}_n))$$

## Simulation protocol



- Calculation of breeding values and of dominance deviations of the individuals using standard notations.
- > Residuals sampled in order to obtain narrow sense h\_2=0.3.
- ➤ Sampling of additive and dominance QTL effects results in average d\_2=VD/VP=0.1 (range:0.01-0.29),
- > this range fits nicely to cattle literature reports (Bolormaa et al. 2015).

## The BayesD-model



### We consider a linear regression model of the form

$$y = X\beta + Z_A a + Z_D d + Z u + E,$$

#### where

y phenotypic observations

 $\beta$  vector of fixed effects that includes the overal mean

a vector of additive effects of the markers

d vector of dominance effects of the markers

u vector of other normally distributed random effects

E vector of normally distributed errors

 $X, Z_A, Z_D, Z$  design matrices.

## BayesD: Method 2 from Wellmann (W. u. B. 2012)

- SITAT HOME DOOD DOOD DOOD
- Extension of BayesC towards accounting for dominance.
- Prior distribution of additive effects: Mixture of two tdistributions, which differ by a scaling factor.
- Prior prob that a marker is important (belongs to the distribution with larger variance): pLD.
- > Prior assumption: independence of |a| and delta = d / abs(a).
- > Small prob that d is much larger than a (i.e. overdominance is a rare but not neglible event)

## Bayes for GWAS



- ➤ Sliding window approach (size: 0.25, 0.5 and 1 cM).
- Window variance of estimated genomic values of individuals calculated using standard notations.
- ➤ 'Test-statistic': Window Posterior Probability of Association,
  controls Proportion of False Positives (WPPA, R. Fernando, 2014)

## Calculation of power and precision



- > 10 Populations and 5 traits per population (50 replicates) simulated and analysed.
- ➤ A QTL is mapped if at least one window around the true QTL position shows a WPPA above a defined threshold.
- > Power = #(mapped QTL) / #(number of QTL).
- Power\_large = #(mapped large QTL) / #(number of large QTL).
- Mapping precision is measured as the size around the QTL with significant windows in cM.

## Results from simulations: window size 0.5 cM



| Marker density | WPPA | BayesC      |           | BayesD      |           |
|----------------|------|-------------|-----------|-------------|-----------|
|                |      | Power_large | Precision | Power_large | Precision |
| 0.5K           | 0.85 | 0.55        | 1.00      | 0.54        | 1.02      |
|                | 0.95 | 0.44        | 0.99      | 0.44        | 0.98      |
|                | 0.99 | 0.27        | 0.97      | 0.36        | 0.88      |
| 1K             | 0.85 | 0.58        | 0.94      | 0.62        | 0.95      |
|                | 0.95 | 0.43        | 0.93      | 0.51        | 0.91      |
|                | 0.99 | 0.37        | 0.92      | 0.38        | 0.93      |
| 2K             | 0.85 | 0.60        | 0.90      | 0.66        | 0.88      |
|                | 0.95 | 0.50        | 0.91      | 0.51        | 0.88      |
|                | 0.99 | 0.43        | 0.92      | 0.41        | 0.89      |

## Results from simulations: window size 1 cM



| Marker<br>density | WPPA | BayesC      |           | BayesD      |           |
|-------------------|------|-------------|-----------|-------------|-----------|
|                   |      | Power_large | Precision | Power_large | Precision |
| 0.5K              | 0.85 | 0.59        | 1.75      | 0.61        | 1.76      |
|                   | 0.95 | 0.45        | 1.70      | 0.49        | 1.73      |
|                   | 0.99 | 0.34        | 1.66      | 0.39        | 1.64      |
| 1K                | 0.85 | 0.64        | 1.73      | 0.69        | 1.74      |
|                   | 0.95 | 0.53        | 1.68      | 0.58        | 1.73      |
|                   | 0.99 | 0.45        | 1.68      | 0.46        | 1.67      |
| 2K                | 0.85 | 0.68        | 1.77      | 0.73        | 1.70      |
|                   | 0.95 | 0.60        | 1.69      | 0.61        | 1.69      |
|                   | 0.99 | 0.50        | 1.70      | 0.50        | 1.67      |

## Application to a Fleckvieh cattle data set (Ertl et al. 20



- ➤ 1996 FV cows, genotyped with Illumina HD-SNP chip, ~630k SNPs.
- ➤ Milk fat yield, because Wellmann et al. (2014) showed increase in prediction accuracy for this trait with BayesD.
- Dominance is important for this trait in this data set (Ertl et al. 2014).

## Plots of WPPA, Results from FV cattle data set





## Estimated window genomic variances: FV data set





**Results from BayesC** 

**Results from BayesD** 

## Conclusions: Simulation & Bayes methods for GWAS

- G VALSTAN HOUSE
- Simulation protocol: As realistic as possible (we hope so).
- Multi-marker GWAS by MCMC-based gs methods: Some nice properties. WPPA controls PFP (Fernando et al. 2014) & easy to calculate fro MCMC samples.
- Care must be taken when choosing the input parameter: pLD, df, window size, MCMC chain length, threshold q\_w (needed for WPPA),
- Single-marker GWAS: Straightforward implementation.

## Conclusions: Considering dominance by Bayes D

- ➤ Power increased and precision decreased with larger window sizes: trade off. Better definition of window boundaries needed (e.g. Beissinger et al. 2015)
- Considering dominance improves power (shift in power: -2 9 %),
- Shift in power due to the use of the additional genetic variance source (dominance variance) by diplotype marker information.
- A diplotype (matched haplotype pairs) breaks down fastly as distances increases: Improved precision was expected as well, ...
- but only observed for low marker densities.



## Thanks for providing the Fleckvieh cattle data set to

## Christian Edel (Institute of Animal Breeding, Bavarian State Research Center for Agriculture)

Ruedi Fries (Chair of Animal Breeding, Technical University of Munich)

The study was supported by a grant form the German Research Foundation, DFG

## WPPA (Fernando et al. 2014)



- ➤ C: Number of MCMC samples in which the window genetic variance exceeds a threshold q\_w. WPPA = C / #samples.
- ➤ Choice of q\_w is critical. Here: chosen under the assumption of an equal distribution of the genetic variance across the genome.
- ➤ WPPA of 0.85, 0.95 and 0.99 are used as thresholds, results in controlling proportion of false positive (PFP) of <0.15, <0.05 and <0.01 (see Fernando et al. 2014).

## Simulation protocol

- TELEVISION OF THE PART OF THE
- Fischer-Wright populations. 1 M & 1 chromosome genomes.
- N<sub>e</sub>-pattern that is observed in cattle breeds (Villa-Angulo et al. 2009), fast decrease from 1000 to 100 within few generations.
   N=1500 in last gen.
- Expected number of mutations per individual: 4. Results in approx. 7K SNPs (with MAF > 0.01). ds)
- Scaling argument from gs theory (Meuwissen 2009):
  - 30M genome with N=45 000 and Ne=100 or
  - 30M genome with N=450 000 and Ne=1000 (across breeds)

## Simulation protocol



- 3 marker panels based on distances and MAF generated: 2k, 1k and 0.5k.
- ➤ LD is a function of 4Ne\*d (d is the distance between loci) -> allows to scale the simulated genomes towards different Ne.
- Corresponds to marker densities with same LD structure:
  - 60k, 30k and 15k in a 30M genome with Ne=100 or
  - 600k, 300k and 150k in a 30M genome with Ne=1000