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Single-marker GWAS 

 One SNP at a time, mixed models with fixed SNP substitution 
effect, simple & fast calculations (ASReml, GCTA, PLINK, …). 

 Produces a ‚p-value‘, convienient to use for post-GWAS 
calculations (e.g. Bonferroni, FDR, meta-analysis). 

 Many associations, but explained variance by mapped QTL is 
small due to imperfect LD & small QTL effects.  

 Neighboured SNP may explain jointly much more QTL variance 
than any SNP by itself. 



Multi-marker GWAS 

 GS-methods: fitting all markers simultaneoulsy. Population 
structure is well approximated (even in admixed populations).  

 Marginal marker effects (effects not explained by other markers).  

 Window approach: explained variance of markers within a 
windows (e.g. 1 cM in size). 

 BayesC and BayesR probably most used gs-methods for 
GWAS. 



Aim of the study: BayesC vs. BayesD for GWAS 

 BayesC (Verbyla et al. 2009) uses priors about e.g. the 
distribution of additive effects and the proprotion of important 
markers, but dominance is not considered. 

 BayesD (W. & B. 2012) is an extension of BayesC towards 
accounting für dominance effects. 

Aim of the study:  

Can we improve power and precision of QTL mapping when 

using BayesD compared to BayesC? 



Simulation protocol 

 Fischer-Wright populations, various marker densities & full 
sequence data  

 In the last gen 15 SNP/chr randomly selected to become a QTL  

 QTL additive and dominance coefficients (delta) sampled based on 
what is known about their dependencies 

 

 



Simulation protocol 

 Calculation of breeding values and of dominance deviations of 
the individuals using standard notations. 

 Residuals sampled in order to obtain narrow sense h_2=0.3. 

 Sampling of additive and dominance QTL effects results in 
average d_2=VD/VP=0.1 (range:0.01-0.29),  

 this range fits nicely to cattle literature reports (Bolormaa et al. 2015).  



The BayesD-model 



 Extension of BayesC towards accounting for dominance. 

 Prior distribution of additive effects: Mixture of two t-
distributions, which differ by a scaling factor.  

 Prior prob that a marker is important (belongs to the distribution 

with larger variance): pLD.   

 Prior assumption: independence of |a| and delta = d / abs(a). 

 Small prob that d is much larger than a (i.e. overdominance is a rare 
but not neglible event) 

BayesD: Method 2 from Wellmann (W. u. B. 2012) 



 Sliding window approach (size: 0.25, 0.5 and 1 cM).   

 Window variance of estimated genomic values of individuals 

calculated using standard notations. 

 ‘Test-statistic’: Window Posterior Probability of Association, 

controls Proportion of False Positives (WPPA, R. Fernando, 2014) 

Bayes for GWAS 



 10 Populations and 5 traits per population (50 replicates) 
simulated and analysed. 
 

 A QTL is mapped if at least one window around the true QTL 
position shows a WPPA above a defined threshold.  
 

 Power       = #(mapped QTL)          / #(number of QTL). 
 Power_large = #(mapped large QTL) / #(number of large QTL). 

 
 Mapping precision is measured as the size around the QTL 

with significant windows in cM.  

Calculation of power and precision 



Marker 
density 

WPPA BayesC BayesD 

  Power_large Precision Power_large Precision 
0.5K 0.85 0.55 1.00 0.54 1.02 
 0.95 0.44 0.99 0.44 0.98 
 0.99 0.27 0.97 0.36 0.88 
1K 0.85 0.58 0.94 0.62 0.95 
 0.95 0.43 0.93 0.51 0.91 
 0.99 0.37 0.92 0.38 0.93 
2K 0.85 0.60 0.90 0.66 0.88 
 0.95 0.50 0.91 0.51 0.88 
 0.99 0.43 0.92 0.41 0.89 

 

Results from simulations: window size 0.5 cM 



Results from simulations: window size 1 cM 

Marker 
density 

WPPA BayesC BayesD 

    Power_large Precision Power_large Precision 

0.5K 0.85 0.59 1.75 0.61 1.76 

  0.95 0.45 1.70 0.49 1.73 

  0.99 0.34 1.66 0.39 1.64 

1K 0.85 0.64 1.73 0.69 1.74 

  0.95 0.53 1.68 0.58 1.73 

  0.99 0.45 1.68 0.46 1.67 

2K 0.85 0.68 1.77 0.73 1.70 

  0.95 0.60 1.69 0.61 1.69 

  0.99 0.50 1.70 0.50 1.67 



Application to a Fleckvieh cattle data set (Ertl et al. 2014) 

 1996 FV cows, genotyped with Illumina HD-SNP chip, ~630k 
SNPs. 

 Milk fat yield, because Wellmann et al. (2014) showed increase 
in prediction accuracy for this trait with BayesD. 

 Dominance is important for this trait in this data set (Ertl et al. 
2014). 



Plots of WPPA, Results from FV cattle data set 

Results from BayesC 

Results from BayesD 
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Estimated window genomic variances: FV data set 

Results from BayesC 

Results from BayesD 
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Conclusions: Simulation & Bayes methods for GWAS 

 Simulation protocol: As realistic as possible (we hope so). 

 Multi-marker GWAS by MCMC-based gs methods: Some nice 
properties. WPPA controls PFP (Fernando et al. 2014) & easy to 
calculate fro MCMC samples.  

 Care must be taken when choosing the input parameter: pLD, df, 
window size, MCMC chain length, threshold q_w (needed for WPPA), 
… 

 Single-marker GWAS: Straightforward implementation.  



Conclusions: Considering dominance by BayesD 

 Power increased and precision decreased with larger window sizes: 
trade off. Better definition of window boundaries needed (e.g. Beissinger 

et al. 2015) 

 Considering dominance improves power (shift in power: -2 - 9 %), 

 Shift in power due to the use of the additional genetic variance 
source (dominance variance) by diplotype marker information. 

 A diplotype (matched haplotype pairs) breaks down fastly as 
distances increases: Improved precision was expected as well, … 

 but only observed for low marker densities.   
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 C: Number of MCMC samples in which the window genetic 
variance exceeds a threshold q_w. WPPA = C / #samples.  

 Choice of q_w is critical. Here: chosen under the assumption 
of an equal distribution of the genetic variance across the 
genome. 

 WPPA of 0.85, 0.95 and 0.99 are used as thresholds, results in 
controlling proportion of false positive (PFP) of <0.15, <0.05 
and <0.01 (see Fernando et al. 2014). 

WPPA (Fernando et al. 2014) 



Simulation protocol 

 Fischer-Wright populations. 1 M & 1 chromosome genomes.  

 Ne-pattern that is observed in cattle breeds (Villa-Angulo et al. 

2009), fast decrease from 1000 to 100 within few generations. 
N=1500 in last gen.  

 Expected number of mutations per individual: 4. Results in 
approx. 7K SNPs (with MAF > 0.01). ds) 

 Scaling argument from gs theory (Meuwissen 2009):  

 30M genome with N=45 000 and Ne=100 or 

 30M genome with N=450 000 and Ne=1000 (across breeds) 



Simulation protocol 

 3 marker panels based on distances and MAF generated: 2k, 
1k and 0.5k.  

 LD is a function of 4Ne*d (d is the distance between loci) -> allows 
to scale the simulated genomes towards different Ne.  

 Corresponds to marker densities with same LD structure:   

 60k, 30k and 15k in a 30M genome with Ne=100 or 

 600k, 300k and 150k in a 30M genome with Ne=1000 
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