Combining automatic milking and grazing using detailed cow information

Bert Ipema, Rudi de Mol, Gertjan Holshof, Wageningen UR Livestock Research, The Netherlands Frank Oudshoorn, SEGES P/S, Aarhus, Denmark Clément Allain, Institut de l'Elevage, France Françoise Flessire, Université de Liège, Liège, Belgique

EAAP 2016, Belfast, UK

Background

Autograssmilk - EU project

- Stop decline of grazing on AM farms !!!
- Evaluate technologies to support the integration of grazing and AM systems

Introduction

- Combining grazing and robot milking:
 - Increase of variability in cow activity level and pattern throughout the day
 - Less information about feed (grass) intake
- How to deal with?

Data collection

- On 4 research and 2 private farms (NL, B, DK and F)
- Collected by robots: DeLaval and Lely

Data collection

Collected by cow attached sensors - activity

 IceTag at left hind leg (IceRobotics Ltd., UK)

Smarttag Neck (Nedap, NL)

Lely neck tag (Lely Industries, NL)

Data collection

Collected by cow attached sensors: eating time

Smarttag Neck (Nedap, NL)

Lifecorder+ (research tool, F)

Results robots

 Technical performance of the farms during grazing season

Farm id and year	Cows	Robots	Cows per robot	MF per cow per day	Cows with MI > 14 h (%)	MY level (kg/d)	Pasture access per day (h)
NL1 2013	52	1	52	2.45	21.9	25.4	11
NL1 2014	60	1	60	2.31	28.5	25.7	10
DK1 2014	94	2	47	2.58	22.7	26.6	18
DK2 2014	171	3	57	2.81	16.7	29.4	7
F1 2014	73	1	73	2.03	36.8	28.6	21
F1 2015	65	1	65	2.09	35.6	28.9	21
F2 2014	47	1	47	1.78	74.3	18.8	24
F2 2015	46	1	46	1.66	65.1	17.1	24
B1 2014	44	1	44	2.06	63.4	19.2	24

Results: milking robot visits

Distribution throughout the day

- Distribution of hourly activity throughout the day
 - IceTag leg sensor individual cow

- Distribution of hourly activity throughout the day
 - IceTag leg sensor herd average

- Distribution of hourly activity throughout the day
 - Nedap Smarttag Neck individual cow

Distribution of hourly activity throughout the day

• Nedap Smarttag Neck - herd average

Results – activity for heat detection

- Distribution of hourly activity throughout the day
 - Nedap Smarttag Neck individual cow

Results heat alerts

Results eating sensor Nedap

Eating pattern one cow throughout 3 days

Results eating sensors Nedap

Herd eating time per day in barn and pasture

Conclusions

- The project has shown that:
 - Increasing grazing resulted in a lower milking frequency and lower milk production per cow.
 - Lower milking frequencies in full time grazing are mainly due to low milking visits during the night.
 - In order to cope with the different characteristics of activity measurements, a different approach for oestrus detections models is needed.
 - Actual information from eating sensors is promising for daily cow and herd management purposes.

Thank you for your attention !!

Acknowledgement

This research was funded by the European Union's Seventh Framework Programme managed by REA-Research Executive Agency http://ec.europa.eu/research/rea ([FP7/2007-2013] under grant agreement no. SME-2012-2-314879.

