

Analysis of behaviour of grazing cattle based on GPS and accelerometer data

Institute for Agricultural Engineering and Animal Husbandry J. Maxa, S. Thurner, M. Kaess and G. Wendl Jan.Maxa@LfL.bayern.de

67th EAAP annual meeting, Belfast, 29th August - 2nd September 2016

Introduction: Modern technologies & alpine farming

- Application of modern technologies in agriculture
 - GPS technology already established especially for crop production (e.g. Telematics)
 - GPS and other motion sensors not yet fully established for livestock on pasture

Current situation in alpine farming

- App. 29,000 registered farms; 1.8 M cattle, 1.6 M sheep + goats
- Decrease of livestock units \rightarrow pasture succession

Workload on alpine farms

- Work with animals accounts for app. 70 % of the total labour input
- Average daily walked distances up to 9 km + 1,600 height meter
- Compared to lowlands higher workload and lower income

- Application of modern techniques (GPS + GSM) to optimize the farm management in alpine regions and to reduce workload
 - → Test of cattle tracking systems for alpine areas
 - **Development of decision-support software tools**
 - Identification of behaviour of grazing cattle based on GPS and accelerometer data

Materials and methods

Prototype of the tracking system

At least 4 GPS satellite signals

Data transmission via GSM, GPRS terminal to web database Configuration and control of animals

Identification of behaviour of grazing cattle

Data collection:

- Tracking collars → GPS (1 Hz) and 3-axis accelerometer (3 Hz) data from 6 heifers (Limousine and Simmental)
- Pasture paddock (app. 1 ha) in Bavaria, Germany
- Direct visual observations → continuous sampling on random animals; max. 8 hours/day; 4 days
- 6 behavioural activities were recorded: grazing, walking, ruminating, standing, lying, drinking and social behaviour

Data analysis and algorithm development:

- 3 behavioural activities analysed: grazing, ruminating and lying
- Speed (m/s) calculated from GPS positions and accelerometer data (x, y, z-axes) logtransformed and used for analysis
- Speed and accelerometer data merged with behaviour data into 10-sec intervals
 > calculation of mean and SD (according to González et al., 2015)
- Selection of variables with significant effect on behaviour based on mixed effects regression analysis, Bonferroni correction
- Fitting of probability density function (PDF) to data with mixture distributions and obtaining of threshold values (R, mixdist package)

Differences among behaviours based on GPS data (10-sec means and SD)

	Grazing	Ruminating	Lying
Speed - mean	0.30 ^a	0.18 ^a	0.20 ^a
Speed - SD	0.18 ^a	0.11 ^{a,b}	0.10 ^b

^{a,b} Pd0.05; SE = 0.021 - 0.048; all data log-transformed

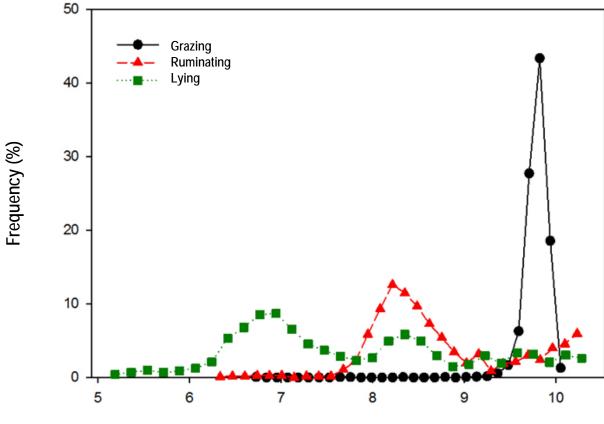
Differences among behaviours based on accelerometer data (10-sec means and SD)

	Grazing	Ruminating	Lying
X - mean	10.45 ^a	10.42 ^a	10.48 ^a
Y - mean	10.41 ^a	10.44 ^a	10.35 ^a
Z - mean	10.40 ^a	10.40 ^a	10.27 ^a
X - SD	9.79 ^a	8.73 ^b	7.93 ^c
Y - SD	9.69 ^a	9.14 ^a	8.29 ^b
Z - SD	9.59 ^a	9.19 ^a	8.22 ^b

^{a,b,c} Pd0.05; SE = 0.062 - 0.197; all data log-transformed

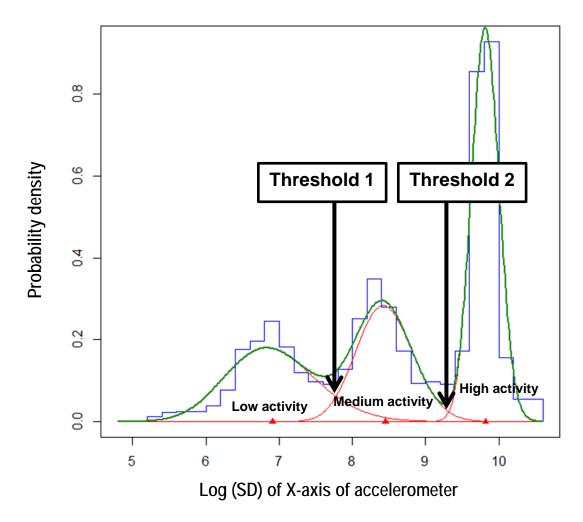
Differences among behaviours based on accelerometer data (10-sec means and SD)

	Grazing	Ruminating	Lying
X - mean	10.45 ^a	10.42 ^a	10.48 ^a
Y - mean	10.41 ^a	10.44 ^a	10.35 ^a
Z - mean	10.40 ^a	10.40 ^a	10.27 ^a
X - SD	9.79 ^a	8.73 ^b	7.93 ^c
Y - SD	9.69 ^a	9.14 ^a	8.29 ^b
Z - SD	9.59 ^a	9.19 ^a	8.22 ^b

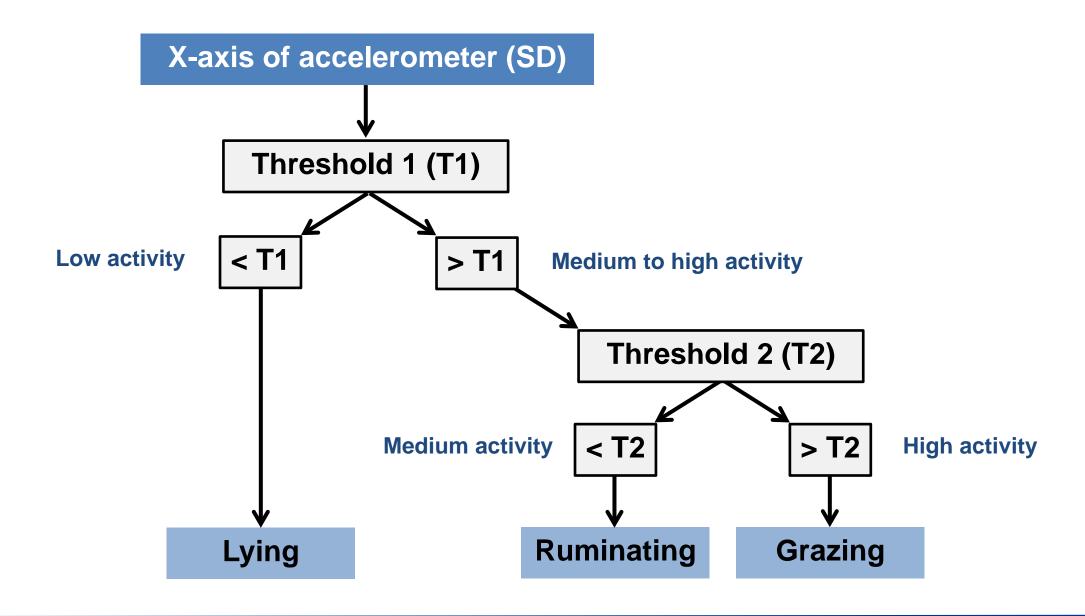

^{a,b,c} Pd0.05; SE = 0.062 - 0.197; all data log-transformed

Differences among behaviours based on accelerometer data (10-sec means and SD)

	Grazing	Ruminating	Lying
X - mean	10.45 ^a	10.42 ^a	10.48 ^a
Y - mean	10.41 ^a	10.44 ^a	10.35 ^a
Z - mean	10.40 ^a	10.40 ^a	10.27 ^a
X - SD	9.79 ^a	8.73 ^b	7.93 ^c
Y - SD	9.69 ^a	9.14 ^a	8.29 ^b
Z - SD	9.59 ^a	9.19 ^a	8.22 ^b


SD of X-axis accelerometer data included for further analyses

Frequency distribution of X-axis accelerometer data (SD)



Log (SD) of X-axis of accelerometer

Frequency distribution and PDF of all variables from X-axis accelerometer data

Results: Decision tree

Performance measures for classification algorithm

	Grazing	Ruminating	Lying
Sensitivity (%)	99.4	71.3	55.5
Specificity (%)	80.8	83.6	98.2
Accuracy (%)	86.9	81.1	78.4

Conclusions

- GPS data (speed SD) were able to distinguish between grazing and lying
- Animal behaviours grazing, ruminating and lying could be distinguished based on X-axis accelerometer data (SD)
- In total 82 % of analysed behaviour data could be correctly classified
- Greatest accuracy for grazing, followed by ruminating and lying

Perspectives

- Higher prediction accuracy and ability to recognize a wider spectrum of behavioural data by sensor-fusion (e.g. accelerometer, GPS, magnetometer)?
- Future development of classification algorithms for health monitoring of livestock on pasture

Thank you for your attention!

