Use of new sensor derived data in Australian dairy systems

Dr Cameron Clark and Prof. Sergio Garcia Dairy Science Group, The University of Sydney, Camden, NSW, 2570

cameron.clark@sydney.edu.au

'The speed of technological advancement has outpaced (by a long way) our ability to turn data into better actions on farm'

(C. Clark, EAAP 2016)

The bleeding edge of dairy farming

A dairy farmer's day

Business management 5-10%

Reproduction & Health 5-15%

Feeding 10-20%

Milk harvesting 50-60%

Milk harvesting 5-10% Reproduction & Health 5-15%

Feeding 10-20%

Business management 50-60%

Group vision and the Z generation

Milk harvesting 5-10%

Reproduction & Health 5-15%

Feeding 10-20%

Business management 50-60%

Milk harvesting 5-10%

Reproduction & Health 5-15%

Feeding 10-20%

Business management 20%

Turning data in actions

- 1. Currently available data: Feed to profit
- Cattle ID and milking order
- 2. Data from new technology
- Cattle accelerometer sensors and health phenotypes
- 3. Our data future
- Forward to the past
- Individual animal attention

Currently available data: Feed to profit

Data: Milking order

Research question: What is the impact of milking order on milk production and composition?

Time after entry (min)	CP (%)	NDF (%)	ADF (%)	Fraction length (cm)	H 19/2
0	19	60	26	42	35-40 40-45
15	19	60	26	42	H 198 H 19/2
30	18	62	27	37	No. 10 10 10 10 10 10 10 10 10 10 10 10 10
45	17	63	28	34	510 15-16 80-35 ⁻
60	16	64	29	31	20-25 CT 20-25" 19/2 25-25
75	15	65	30	27	1.20CT H 15-3" 10-55-
90	15	65	29	28	Been the set the set
105	15	65	30	26	The Cold Mar A
SED	1.3	3.13	2.32	2.454	

(Scott et al., 2014)

40-

/H 35-

Large herds: Creating value from data

Farm	MYdif (%)	MYdif (L/cow/dav)	Cows				
			Average	SD*			
1	17.2	-5	476	115			
2	18.6	-3.9	568	172			
3	29.1	-7.5	700	111			
4	15.1	-4.1	776	118			
5	14.4	-2.3	618	82			
6	16.0	-3.4	763	210			
Av	18.4	-4.4					
*SD: Standard deviation							

Question: Can we increase the efficiency pasture nutrient conversion to \$ through simple changes in management?

Question: Are there high environmental impact cows?

Turning data in actions

- 1. Currently available data: Feed to profit
- Large herds project
- Voluntary cow traffic
- 2. Data from new technology
- Health phenotypes
- 3. Our data future
- Forward to the past
- Individual animal attention

Data from new technology: Health phenotypes

Obtaining real-time behaviour of dairy cattle at a sub-minute level is available to research (and for commercial farms) now.

Data from new technology: Health phenotypes

Data from new technology: Health phenotypes

'Health phenotypes'

– Behaviour phenotype

'Oestrus phenotype'

'Oestrus phenotype'

Theriogenology 83 (2015) 739-748

Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system

S. Talukder^{a.*}, P.C. Thomson^b, K.L. Kerrisk^a, C.E.F. Clark^a, P. Celi^a

^aDairy Science Group, Faculty of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia ^bReproGen-Animal Bioscience Group, Faculty of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia

'Oestrus phenotype'

- Standing to be mounted
- Interval
- Duration
- Intensity
- Expression of behaviours...?
- Interaction herd mates

'Calving phenotype'

The University of Sydney

'Calving phenotype'

Animal (2015), 9:4, pp 691–695 © The Animal Consortium 2014 doi:10.1017/S1751731114003127

Rumination and activity levels as predictors of calving for dairy cows

C. E. F. Clark¹⁺, N. A. Lyons², L. Millapan³, S. Talukder¹, G. M. Cronin¹, K. L. Kerrisk¹ and S. C. Garcia¹

¹ Dairy Science Group, University of Sydney, Canden 2570, NSW, Australia; ²Dairy and Intensive Livestock Industries, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle NSW 2568, Australia; ³Department of Animal Production, Faculty of Agronomy, University of Buenos Aires, Buenos Aires 1417, Argentina

'Transition cow phenotype'

'Lameness phenotype'

School of Engineering and Faculty of Veterinary Science collaboration

PhD: "Advanced Perception in Precision Livestock Robotics: Lameness"

'LDA phenotype?'

New Zealand Veterinary Journal

ISSN: 0048-0169 (Print) 1176-0710 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzv20

Rumination patterns, locomotion activity and milk yield for a dairy cow diagnosed with a left displaced abomasum

Relative day of illness for LDA cow

Data from new technology

Turning data in actions

- 1. Currently available data: Feed to profit
- Large herds project
- Voluntary cow traffic
- 2. Data from new technology
- Health phenotypes
- 3. Our data future
- Forward to the past
- Individual animal attention

Our data future: Forward to the past

Herd management boundaries set by farmers

- System optimisation for health and profit

The sound of 'moosic': The language of cattle (PhD A. Green)

Dr Cameron Clark Senior Research Fellow Faculty of Veterinary Science +64 477324206 cameron.clark@sydney.edu.au

