# ELECTRICITY AND WATER CONSUMPTION ON IRISH COMMERCIAL DAIRY FARMS

P.Shine<sup>1</sup>, T.Scully<sup>2</sup>, M.D.Murphy<sup>1</sup>, J.Upton<sup>3</sup>, L.Shalloo<sup>3</sup>

- <sup>1</sup> Department of Process, Energy and Transport Engineering, Cork Institute of Technology, Cork, Ireland
- <sup>2</sup> Department of Computing, Cork Institute of Technology, Cork, Ireland
- <sup>3</sup> Animal and Grassland Research and Innovation Centre, Teagasc Moorepark Fermoy, Co. Cork, Ireland







## **Itinerary**

- Electricity & Water Introduction
- Data Acquisition
- Pre / Post Quota Comparison
- Milk Cooling Technology Comparison
- Linear Prediction Capabilities



## **Typical Milking Process**



Philip.Shine@mycit.ie

### Electricity & Water - Why?



## Data Acquisition



### Post Quota Consumption Change



### Effect of Cooling System on Electricity

Wh/Lm between dairy farms employing different milk cooling systems Jan-15 - Dec 15



## Effect of Cooling System on Electricity



| Coolin        | a Cyatam      | Wh/Lm <sup>2</sup> |        |        |        |              |  |
|---------------|---------------|--------------------|--------|--------|--------|--------------|--|
| Coolin        | ooling System | n                  | Mean   | SD     | Median | % Difference |  |
| A DX C2^, D2^ |               | 137*               | 81.9   | 293.44 | 39.89  |              |  |
| B DXPHE C     | 2^, D2^       | 888*               | 70.41  | 144.09 | 37.48  | -6%          |  |
| C IB D2^      |               | 60*                | 102.88 | 174.82 | 52.62  |              |  |
| D IBPHE       |               | 135*               | 69.07  | 104.75 | 43.32  | -18%         |  |

**^Small Effect Size** 

## Effect of Cooling System on Water

Lw/Lm between dairy farms employing different PHE procedures Jan-15 - Dec 15



Philip.Shine@mycit.ie

## Effect of Cooling System on Water



|   |                     | Lw/Lm |       |       |        |              |
|---|---------------------|-------|-------|-------|--------|--------------|
|   | PHE Water Procedure | n     | Mean  | SD    | Median | % Difference |
| Α | GW PHE Not Recycled | 21*   | 23.64 | 76.98 | 5.46   |              |
| В | GW PHE Not Utilized | 172*  | 13.39 | 37.71 | 5.77   |              |
| С | GW PHE Recycled     | 761*  | 12.25 | 30.22 | 6.33   | +8%          |

## Linear Prediction - Electricity

| Variable                           | Estimate | SE     | Tstat | p-Value              |
|------------------------------------|----------|--------|-------|----------------------|
| Intercept                          | 258.82   | 133.81 | 1.93  | 0.05                 |
| Total Number of Milking Cows       | 5.86     | 0.75   | 7.85  | 1.13x <sup>-14</sup> |
| Total Number of Dairy Cows         | 5.72     | 0.69   | 8.30  | 3.69x <sup>-16</sup> |
| Milk Production (Litre)            | 0.01     | 0.00   | 9.41  | 3.87x <sup>-20</sup> |
| Mean Maximum Temperature (°C)      | -35.19   | 5.66   | -6.22 | 7.37x <sup>-10</sup> |
| Cooling System - DXPHE             | -113.70  | 56.47  | -2.01 | 0.04                 |
| Cooling System – Ice Bank          | 333.44   | 96.41  | 3.46  | 0.00                 |
| Cooling System – Ice Bank with PHE | 172.96   | 69.05  | 2.50  | 0.01                 |
| Air Compressor - No                | -221.55  | 39.89  | -5.55 | 3.63x <sup>-08</sup> |
| Frequency of Hot Wash              | 11.21    | 1.67   | 6.69  | 3.78x <sup>-11</sup> |
| Total Water Heater Power (kW)      | 206.45   | 23.07  | 8.95  | 1.89x <sup>-18</sup> |

Number of observations: 950, Error degrees of freedom: 939

Root Mean Squared Error: 498

Adimeted D. Comerced C. COF

#### **Linear Prediction - Water**

| Variable                              | Estimate              | SE    | Tstat | p-Value              |
|---------------------------------------|-----------------------|-------|-------|----------------------|
| Intercept                             | 14.76                 | 30.46 | 0.48  | 0.63                 |
| Total Number of Milking Cows          | 0.29                  | 0.20  | 1.45  | 0.15                 |
| Milk Production (Litre)               | 1.3x10 <sup>-03</sup> | 0.00  | 4.50  | 7.64x <sup>-06</sup> |
| Mean Minimum Temperature (°C)         | 2.00                  | 1.50  | 1.33  | 0.18                 |
| Air Compressor - No                   | 64.27                 | 13.18 | 4.88  | 1.27x <sup>-06</sup> |
| Frequency of Hot Wash                 | 2.04                  | 0.47  | 4.30  | 1.85x <sup>-05</sup> |
| Number of Parlour Units               | 11.90                 | 1.48  | 8.05  | 2.46x <sup>-15</sup> |
| Cooling System PHE Water - Recycled   | 49.55                 | 12.60 | 3.93  | 9.03x <sup>-05</sup> |
| Winter Building Troughs - Not Leaking | -96.43                | 13.79 | -6.99 | 5.05x <sup>-12</sup> |

Number of observations: 944, Error degrees of freedom: 935

Root Mean Squared Error: 142

Adjusted R-Squared 0.346

#### Conclusion & Future Work

- 40.14 Wh/kg FPCM & 6.54 Lw/kg FPCM
- 12 month post quota:
  - Consumption increased, efficiencies on average decreased (large variance)
- Milk pre-cooling system saves 13% Wh/Lm while increasing water consumption of 8%.
- Water consumption difficult to predict linearly
- Increase in water consumption may cause problems with limited borehole supplies in peak milk production months
- Cost optimum exist for milk pre-cooling

# Thank you, Questions?