Genetic management without pedigree: effectiveness of a breeding circle in a rare sheep breed

Jack J. Windig, Marjolein Verweij, Kor Oldenbroek

EAAP 2016

Rare breeds

Numerically small (especially males)

- High inbreeding rate
- Loss of genetic diversity
- Inbreeding depression and genetic defects
- Genetic management needed
 - Pedigree: management of relatedness and inbreeding
 - No pedigree: breeding circle

Breeding circle

- Each herd receives rams from the previous herd in the circle
- Each herd provides rams to the next herd in the circle
- Ewes stay in own herd
- Pattern remains the same over the years
- Relatively simple

- Theoretically effective in reducing inbreeding rates
- Practically effectiveness not tested

Veluws Heideschaap

- Rare sheep breed
- Dates back to middle ages
- 8 large herds remain
- Used for heath conservation
- Inbreeding problems before
- Breeding circle since 1980's
- Unique case to test effectiveness
- of breeding circle in practice

Aim of study

How effective is the breeding circle in the "Veluws Heideschaap"?
Mathematical
Computer simulation
DNA analysis

- Keep track of average kinship (f) within and between herds
- f between herds depends on kinship between parental herds in previous generation

$$f_{x,y(t)} = \frac{1}{4} \left(f_{x,y} + f_{x,y-1} + f_{x-1,y} + f_{x-1,y-1} \right)_{t-1}$$

• f within herds on effective population size + kinship between parental herds $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\frac{1}{N_e} = \frac{1}{4n_m} + \frac{1}{4n_f}$$

$$f_{x(t)} = \frac{1}{N_{e,x}} \left(1 - F_{x(t-1)} \right) + \left(\frac{1}{2} \right) f_{x(t-1)} + \frac{1}{2} f_{x,x-1(t-1)}$$

F on kinship in parental herds

$$F_{x(t)} = f_{x,x-1(t-1)}$$

WAGENINGEN UR For quality of life

Mathematical 2

- Kinship matrix in excel based on formulas
- For 8 herds with herd sizes equal to Veluws Heideschaap in 2015
- Inbreeding rates calculated from inbreeding levels

WAGENINGEN UR
For quality of life

Nm	Nf	Ne	ΔF
9	175	34	1.47%
14	271	53	0.94%
7	141	27	1.85%
7	110	26	1.92%
9	140	34	1.47%
7	147	27	1.85%
14	279	53	0.94%
9	170	34	1.47%
76	1433	289	0.17%
	Nm 9 14 7 7 9 7 14 9 2 76	NmNf91751427171417140914014279142799170761433	NmNfNe91753414271537141277110269140347147271427953917034761433289

Result Mathematical inbreeding rates

Initially divergent inbreeding rates between herds up to 0.47%
Very effective!

After 40 years all rates 0.18%

For quality of life

Result Mathematical inbreeding rates

Average inbreeding rate for total population

0,40% nbreeding rate 0,30% 0:0 0,20% -0.1:0 -0.2:0 0,10% -0.3;0 0.3;0.05 0,00% ----0.3;0.1 13 18 23 28 33 -0.3;0.2 -0,10% -0,20%

(relatedness within herd; relatedness between herds)

Years

- Initially decrease in inbreeding rates
- After 30 years all rates 0.18%

Computer simulation

- Simulation tool that calculates inbreeding (Windig & Oldenbroek, 2015)
- Takes into account overlapping generations and variation due to chance
- Input
 - Population structure (population size, number of herds, number of sires and dams, litter size, age breeding animals, exchange of rams between herds etc.)
- Rams 1 year old, Ewes up to 6 years
- 25 runs, 100 years
- Output: Inbreeding level and rate

Results Computer simulation

	ΔF	Min.	Max.
Mathematical	0.18%		
Simulation	0.10%	0.09%	0.12%
Ewes 2 year	0.15%	0.013%	0.16%
No overlapping generations	0.17%	0.16%	0.19%

- Use of older ewes reduces inbreeding rate
- Computer simulations and mathematical calculations agree

Real inbreeding rates: DNA analysis

12 DNA samples per herd, 8 herds

- Rams 1 year old
- Ewes 6 years old
- 10k SNP-chip
- DNA edit: 96 samples → 90 samples 12,785 SNPS → 11,432 SNPs

Level of heterozygosity \rightarrow inbreeding rate per generation

•
$$\Delta F = \left(1 - \frac{H(t)}{H(t-x)}^{1/x}\right) * L$$
; $\Delta F = \left(1 - \frac{H(rams)}{H(ewes)}^{1/6}\right) * L$

Results – DNA analysis

ANOVA:

- Significant difference between sexes
- No significant difference between herds
- Estimated ΔF
 - 1.35%

Not effective!

Possible reasons

- Sampling
 - Sampling simulated ΔF : 0.07 0.17
- Dominant rams: not all rams equal chance siring offspring
 - Simulated 2 dominant rams siring 90% offspring
 - ΔF: 0.38
- Selection
 - Strong selection on scrapie resistance in past 10 years
 - Old simulations: ΔF from 0.09 -> 0.36 with scrapie selection

Conclusions

- Theory does not always match practice
- Breeding circles theoretically effective
- High inbreeding rate in practise
- Caused by selection and dominant rams (?)

Acknowledgements

Rare breeds trust Myrthe Maurice Saskia Visser

