EFFICIENT & ECOLOGICALLY-FRIENDLY PIG AND POULTRY PRODUCTION.

A WHOLE-SYSTEMS APPROACH TO OPTIMISING FEED EFFICIENCY AND REDUCING THE ECOLOGICAL FOOTPRINT OF MONOGASTRICS.

ECOFCE

BASIC DATA

Funding: EU-FP7 (€ 6 million)

Start date: 1 February 2013

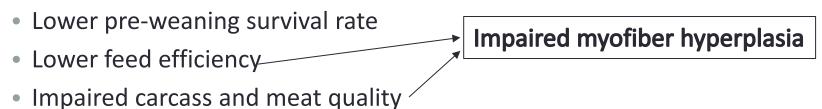
Duration: 48 months (2013 to 2016)

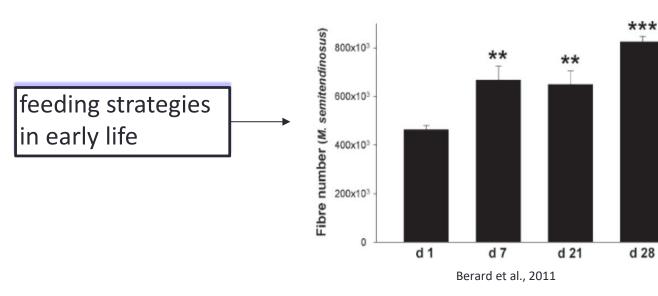
ECO-FCE: Effect of early artificial rearing and milk replacer supplementation on growth of pigs (carcass and meat quality traits)

Johannes Gulmann Madsen^{1,2}, Michael Kreuzer² and Giuseppe Bee¹ ¹Agroscope Posieux, 1725 Posieux, Switzerland ²ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland 01.09.2016

Contents

- Background
- Materials and Methods
- Results
 - Pre-weaning survival rate and growth
 - Post-weaning growth
 - Carcass and meat quality traits
- Conclusions
- Perspectives





Background

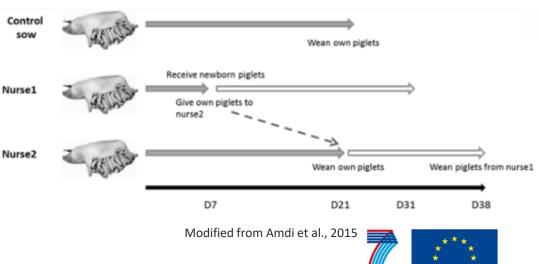
 Low birth weight pigs (L-BtW) are a concern in modern pig production because of:

Background

- Survival, growth and hyperplasia is impaired in L-BtW piglets
 - Consequence of increased litter size resulting in intra-uterine growth restriction (IUGR)

- Choice of supplementation based on previous studies
 - L-arginine (Kim and Wu, 2004, Yao et al., 2008)
 - Promotes: Survival, growth and protein synthesis
 - L-carnitine (Lösel et al., 2009; Keller et al., 2011)
 - Promotes: Post natal myofiber hyperplasia in L-BtW piglets

Study objectives


Objective

- Improve production efficiency by:
 - Increasing survival
 - Enhancing postnatal myofiber hyperplasia
 - Increasing growth rate

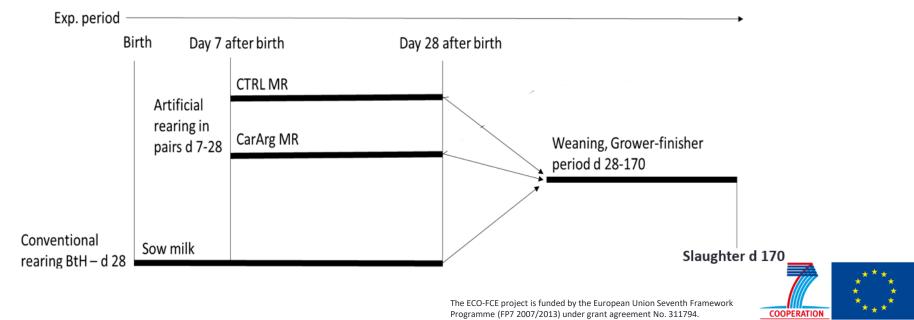
Alternative to conventional rearing

- Nursing sow strategies
- Early artificial rearing in rescue decks
 - Large littermates, whole litter or <u>L-BtW piglets</u>

COOPERATION

Materials and Methods

All piglets born from hyperprolific sows (>15 born/litter) with a BtW < 1.2 kg


- 48 piglets were artificially reared from d 7-28 of age
- 24 piglets were conventionally reared piglets by their dam sow for 28 d (SOW)

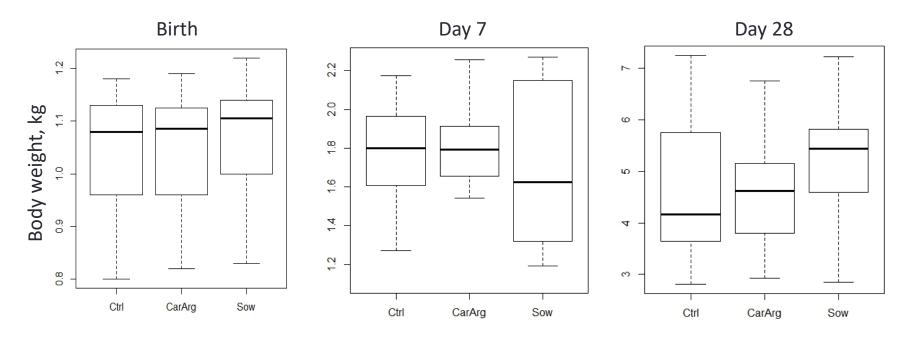
Artificial rearing:

- Ctrl: Commercial milk replacer (20.5% protein, 9.5% fat, 18.6 GE MJ/kg DM)
- CarArg: Commercial milk replacer supplemented with 0.05% L-carnitine + 1.67% L-arginine

After weaning:

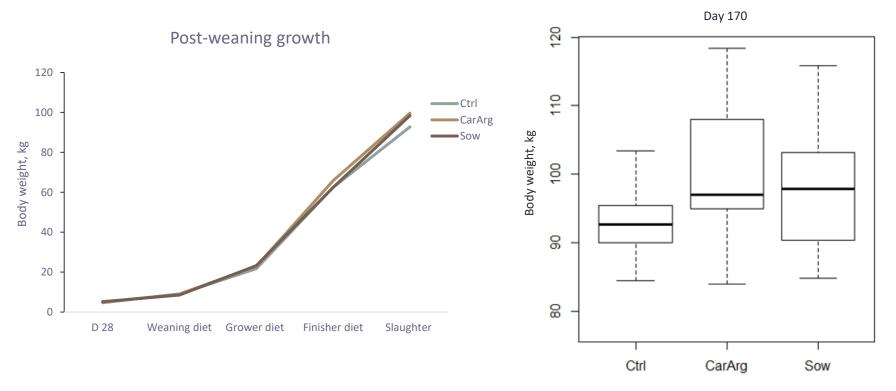
•Ctrl, CarArg and SOW pigs were fed standard weaning, grower and finisher diet till slaughter at 170 d of age

ECOFCE


Materials and Methods

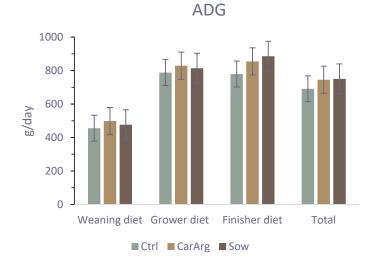
- Traits of interest:
 - Pre-weaning growth
 - Post-weaning growth
 - BW at slaughter (d 170)
 - Daily gain (ADG), feed intake (ADFI), feed efficiency (G:F)
 - Carcass traits
 - Hot and cold carcass weight
 - Lean meat percentage
 - Meat quality traits
 - Drip loss, 24h

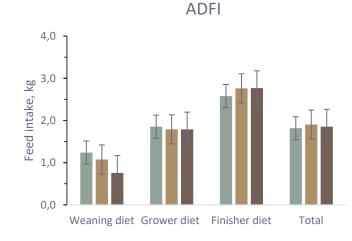
Results: Pre-weaning survival and growth ECOFCE

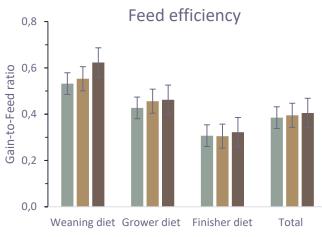


- Low weaning weight -> low DM content of milk replacer
- 0% mortality of artificially reared piglets
- 8% mortality from d 7-28 in the sow herd (loose-housed system)

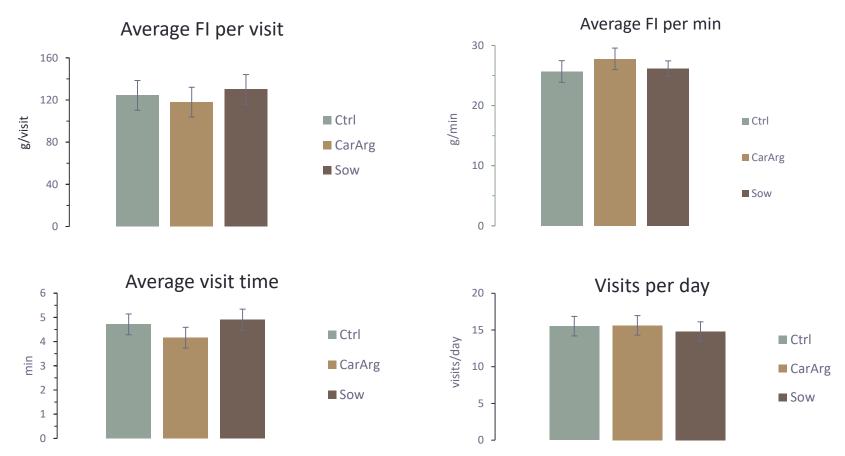
Results: Post-weaning perfomance


• No effect on slaugther weight (6 kg diffeence Ctrl vs. CarArg and Sow)


Large variation within groups

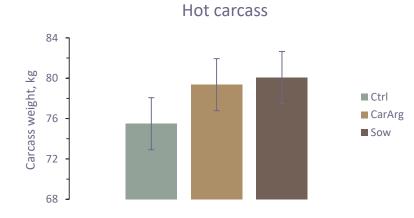

Results: Post-weaning perfomance

■ Ctrl ■ CarArg ■ Sow

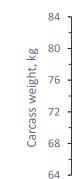

■ Ctrl ■ CarArg ■ Sow

No difference between groups

Results: Eating behavior



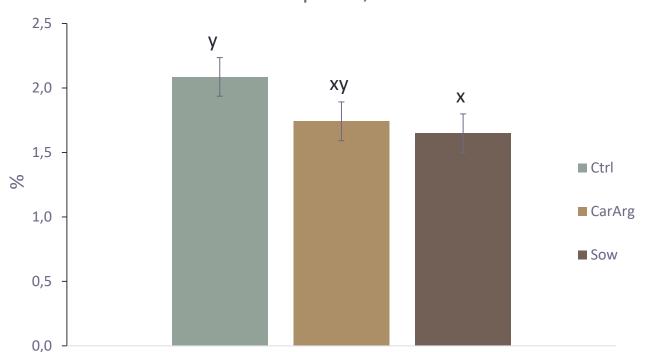
Eating behavior does not explain the difference in final slaughter weight



Results: Carcass traits

- No difference between groups
- Within the artificially reared groups, CarArg tended to increase carcass weight

Cold carcass



Results: Meat quality traits

Drip loss, 24 h

Lower water holding capacity in the Ctrl group ($0.05 \le P < 0.10$)

Conclusions

- Improved survival rate of L-BtW piglets from d 7-28
- No clear supplemental effect on pre- and post weaning growth
- Growth performance of L-BtW is not compromised by artificial rearing
- Selected meat quality traits are not compromised in the CarArg group

Perspectives

Milk replacer needs optimization

- Dry matter, protein and fat content, plus amino acid and fatty acid composition needs adjustment
- Is the assumption correct that sow milk is optimal for L-BtW piglets?

Considering earlier artificial rearing

- In some countries rearing d 3 is allowed
- Survival rate lowest first four days after farrowing
- L-BtW piglets most vulnerable

Thank you for your interest

Exp. 1

3 week trial:

Restricted feeding

ECOFCE

- Day 7 28.
 Piglets weighed weekly and feed intake weekly and feed and and weekly and feed and fe
 - Myofiber number and size (histology)
 - Energy metabolism in muscle (enzym activity)
 - Gene expression analysis of myogenicand proteasome related genes.

Ingredients, %	CTRL	CAR	ARG		
Whey powder	61.6	61.6	61.6		
Whole milk protein	28.0	28.0	28.0		
Milk protein	6.2	6.2	6.2		
L-arginine, g/kg BW · piglet ⁻¹ · d ⁻¹	-	-	1.08		
L-carnitine, g piglet · d ⁻¹	-	0.40	-		
Analyzed composition, % DM					
Gross energy, MJ/kg DM	17.9	17.9	17.9		
Crude protein	21.1	21.1	21.1		
Crude fat	7.8	7.8	7.8		

Results Exp. 1

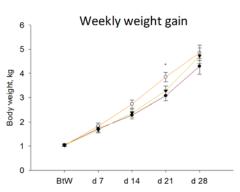
Key enzyme for following pathways

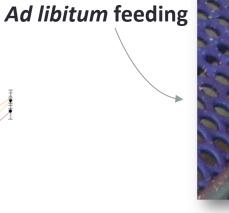
Citric acid cycle activity

- Citrate synthase (CS)
- Lipid oxidation
 - β-hydroxyacyl-CoA dehydrogenase (HAD)
- Glycolytic capacity
 - Lactate dehydrogenase (LDH)

The LDH:CS and LDH:HAD = markers for muscle maturity -> reflect the relative importance of **glycolytic** compared to **oxidative** metabolism in muscle.

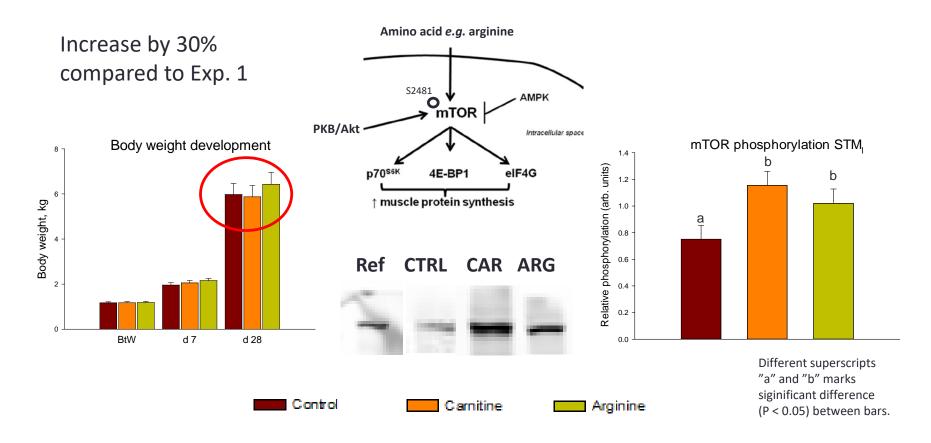
	Treatment		
ltem ³	С	CAR	ARG
Dark portion			
CS (× 10⁻²)	0.428 ^y	0.393 ^{xy}	0.357 [×]
LDH	0.930ª	2.088 ^b	1.617 ^b
LDH:HAD	3.63ª	9.09 ^b	6.29 ^{ab}
LDH:CS	228.84ª	552.95 ^b	462.14 ^b
Light portion			
CS (× 10 ⁻²)	0.405 ^b	0.384 ^b	0.290ª
LDH	1.255ª	1.950 ^{ab}	2.471 ^b
LDH:HAD	7.33ª	11.56 ^{ab}	14.62 ^b
LDH:CS	321.33ª	529.38 ^b	904.22 ^b


EC •• FCE


Conclusion Exp. 1 -> Changes for Exp. 2

 Both supplements positively affect muscle maturation in early life

- No effects of supplements on growth performance and carcass composition
 - Low weaning weight
 - Restricted intake?



Results Exp. 2

Conclusion Exp. 2

- Compared to Exp. 1, ad libitum feeding improves growth and weaning weight
- Molecular effect of supplementation
 - Increased activation of protein synthesis pathway.
- No clear indication that one of the two supplements has an advantage over the other (CAR ⇔ ARG)

Exp. 3

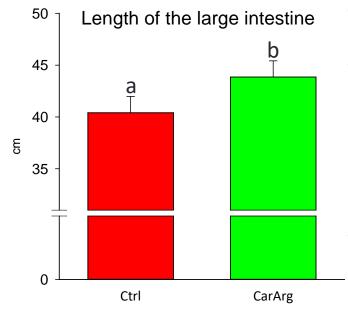
• Optimize milk replacer

		Milk replacer		
Ingredients, %	Sow milk	Exp. 1 & 2	Optimized	
Whey powder	-	61.6	-	
Whole milk protein	-	28.0	-	
Milk protein	-	6.2	26.5	
Butter powder, 75% fat	-	-	51.0	
Glucose	-	1.0	20.0	
Analyzed composition, as fed				
Dry matter, %	~ 20.0	20.0	20.0	
Gross energy, MJ	5.5	3.6	5.5	
Crude protein	56.0	42.2	63.2	
Crude fat	83.2	15.6	81.2	

Exp. 3

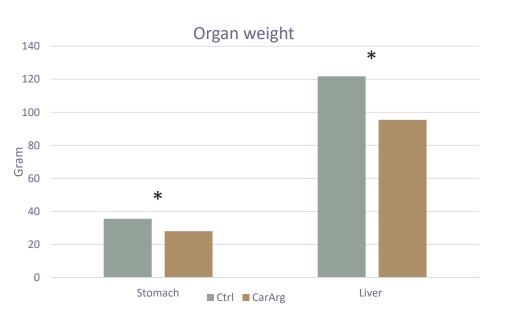
Rearing with optimized milk replacer

• Massive diarrhea, low growth -> experiment terminated.

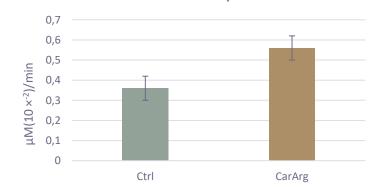

Speculations regarding diarrhea

• DM, protein and/or fat content too high.

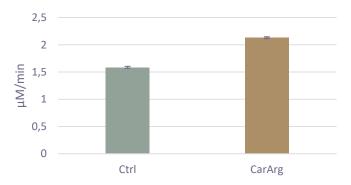
Preliminary results of Exp. 4


Pre and post weaning growth of artificially reared piglets (preliminary results)

Item	Dietary treatment		
lem	CTRL	CarArg	
Pre weaning			
Birth weight, kg	1.037	1.042	
BW day 7, kg	1.769	1.700	
BW day 28, kg	4.343	4.375	
ADG d 7-28, kg/d	0.123	0.128	
ADFI d 7-28, kg DM/d (pair)	0.273	0.287	
Post weaning (PW)			
BW 1 month PW	10.1	11.5	
BW 2 month PW	24.5	24.9	
ADG Weaning-2 month PW, kg/d	0.338	0.340	



Results: Organ weights and enzyme activity d 28



- Stomach and liver weight greater in Ctrl piglets. * (P < 0.05).
- Greater CS and LDH activity in STM of CarArg pigs (*P* < 0.05).

CS activity

